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Outline
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The technical content:

Autologistic regression for binary
variables C, with complex associa-
tion, and covariate information X.

• There are a few model variants.
• Claim: it matters which one you

choose.

The application:

Where is the smoke in this picture?
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Motivating application
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Remote sensing for smoke monitoring
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Earth-orbiting satellites help study large-
scale environmental phenomena.

Our interest: smoke from forest fires. Data: MODIS images
• 1 per day, 143 days
• 1.2 Mp each
• Centered at Kelowna,

BC
• Hand-drawn smoke ar-

eas

Goal: classify pixels into
smoke/nonsmoke

Why?
• Health studies
• Model input or valida-

tion
• Monitoring & archiving
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Data characteristics
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• Binary responses (smoke/nonsmoke).
• Spectra at each pixel are covariates for predicting smoke.
• Hyperspectral images: a high-dimensional predictor space.
• Expect spatial association.

35 image planes
+

higher order terms
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Notation
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The true class
label for pixel i

Ci

The image features
(predictors) for

pixel i

xi

C
the full set of N class

labels
(the true scene)

︸ ︷︷ ︸
X

the full set of features
(the observed image)
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Autologistic regression models
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Spatial Associations
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Image segmentation = pixel classification.

If independent pixels ⇒ Use standard classification technology.

But smoke/nonsmoke regions are spatially smooth.

RGB working image The true scene
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Model-Based Approaches
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Many ad hoc ways to let pixels influence each other.

Model-based approach: Markov random fields (MRFs).

• graphical model

• popular in computer vision

Generative model: p(C|X, θ) ∝ p(X|C, θ)p(C, θ)

Discriminative model: p(C|X, θ) = η(X, θ) ⇐ regression

We will use the discriminative approach.

Model p(C|X, θ) directly as a MRF.

MRF model
for the true

scene

Image model
(how to do?)

“conditional
random field”
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Aside: Markov Random Fields
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Hammersley–Clifford theorem

Joint PMF can be expressed as a product
of potential functions, one for each maximal
clique.

M = the set of maximal cliques.
Cm = the variables in the mth clique. Then

p(c) =
1
Z

∏

m∈M

φm(cm)

Customary to write the joint density as
Gibbs distribution form,

p(c) ∝ eQ(c)

where Q(∙) is the negpotential function.

The MRF

Its
maximal
cliques
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The Autologistic Model
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• A Markov random field of
binary random variables.

• For now, use zero/one coding:
Ci ∈ {0, 1}.

• The graph is a regular,
square grid.

• Nothing new
Physics: Ising model
Statistics: Besag (1974)
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The Autologistic Model (2)
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Joint PMF:

Pr(C = c|α, λ) =
1

Z(α, λ)
exp




∑

i∈V

αici +
∑

(i,j)∈E

λijcicj





• Positive αi values favor +1 class.
• Setting λij > 0 favors locally smooth configurations (Ci = Cj).
• Typically set λij = λ, ∀i, j

Conditional distributions:

Let πi = Pr(Ci = 1|all other C). Then can show:

log

(
πi

1 − πi

)

= αi +
∑

j∼i

λijcj

︸ ︷︷ ︸
unary terms

(one per vertex)

︸ ︷︷ ︸
pairwise terms
(one per edge)

j is a neighbour
of i
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Autologistic Regression
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Put covariates in the unary part: αi = xT
i β.

Pairwise coefficients: λij = λ.

Then:

log

(
πi

1 − πi

)

= xT
i β + λ

∑

j∼i

cj .

Interpretation:

• Unary part is a linear predictor.
• xT

i β determines conditional log-odds of Ci = +1 in the absence of spatial
effects.

• Pairwise λ determines strength of neighbour effects.
• Setting λ = 0 reverts to standard logistic regression.
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A centered version
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Caragea & Kaiser (2009)
“Autologistic models with interpretable parameters”

Hughes, Haran, & Caragea (2011)
“Autologistic models for binary data on a lattice”

• The neighbour sum
∑

cj increases log-odds unless all neighbours are zero.
=⇒ Estimates of β, λ are strongly coupled

• Strongly recommended a centered autologistic model:

log

(
πi

1 − πi

)

= xT
i β + λ

∑

j∼i

(cj − μj)

where μj = E[Yj |λ = 0] is the independence expectation.
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Estimation Issues
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Estimation is made hard by the normalizing constant.

Existing possibilities

1. Ignore spatial association (logistic regression, large n, large p).

2. Pseudolikelihood (PL): L(β, λ) ≈
∏

img

n∏

i=1

logit(πi)

3. Monte Carlo ML

4. Bayesian approach

Problems

• We have ∼ 108 pixels

• We have thousands of predictors, need model selection

• We’re still developing models—rapid evaluation of candidates is beneficial

}
Hughes et al. use perfect sampling; recom-
mend PL for large n.
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Some claims about coding and
centering
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Model variants
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• Binary variables do not have to take values 0 and 1.

• In general, let them have coding {`, h}

• We’re most interested in
{0, 1}, used in statistics and sometimes in computer vision
{−1, 1}, used in physics and sometimes in computer vision

• And we have two possibilities:
centered, or
standard (not centered)

Are all these model variants just parameter transformations,
or are they distinct models?

If not the same, what are the differences?

In the following , say f1(z; θ1) and f2(y; θ2) are equivalent if for any θ2 there
exists a θ∗

1 such that the two models assign the same probability whenever z
and y represent the same configuration.

17



A general form of the model

mwolters@fudan.edu.cn 18/39

If we let the coding be {`, h} and define the centering adjustment

μα =






0 for a standard model

[μα
1 ∙ ∙ ∙μα

n]T with μα
i =

`e`αi + hehαi

e`αi + ehαi
for a centered model

Then the autologistic (AL) PMF is

fC(c; α, λ) ∝ exp(cT α − λcT Aμα +
λ

2
cT Ac),

where A is the adjacency matrix.

And the logit form is

log

(
πi

1 − πi

)

= (h − `)



αi + λ
∑

j∼i

(cj − μα
j )





To obtain the autologistic regression (ALR) model, just plug in α = Xβ
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Autologistic models are equivalent
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Sketch of proof:

• If z and y have different coding, they are related by

z = ay + b1

whenever they represent the same configuration.

• Use this to equate PMFs of z and y

• Obtain an explicit parameter transformation from one model to the other

Theorem 1

All AL models are equivalent, irrespective of coding or centering.
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Autologistic regression models are NOT equivalent

mwolters@fudan.edu.cn 20/39

Sketch of proof:

• Follow logic of Theorem 1.

• Transformation between model only exists if an overdetermined system (n
equations, p unknowns) can be solved for β.

• Coefficients of the system depend on arbitrary X.
• System is linear for standard models, nonlinear for centered ones.

This means
– standard, zero/one
– standard, plus/minus
– centered, zero/one
– centered, plus/minus

Are four different probabilistic structures.

Theorem 2

Different ALR models are not, in general, equivalent.
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Advantages of standard, plus/minus model
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Claim: the standard model with {−1, 1} coding is the best choice.

Why?

1. It resolves the asymmetry of the standard model without the awkward μα
term:

log

(
πi

1 − πi

)

= 2



xT
i β + λ

∑

j∼i

cj





Sign of pairwise term depends on majority vote.

2. It “decouples” β and λ better than centering (evidence to follow).

2. It allows a convenient plug-in estimation of λ . . .
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An estimation shortcut for λ
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Proposal: plug-in estimation

a) Use independence (logistic) to get β̂
– Including model selection
– Sample pixels if neccesary to reduce n to manageable size

b) Choose λ̂ to optimize predictive power

Rationale

Treat λ as a smoothing parameter.

• Assuming independence, β̂ captures how information in X can be used to
predict C.

• For fixed β̂, tuning λ will optimally reduce noise in the predicted
probabilities.
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Checking the claims
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A small example
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n = 9 variables, square graph.

One predictor plus intercept.

• Small problem.
• Can compute probabilities di-

rectly.

Linear predictor vector is

α = Xβ =
















1 xo

1 xo

1 xo

1 xo

1 x5

1 xo

1 xo

1 xo

1 xo

















[
β0

β1

]

• Choose values of xo, x5, β0, β1
• Get marginal Pr(C5 = high) as

a function of λ, for four models:
– standard, zero/one
– standard, plus/minus
– centered, zero/one
– centered, plus/minus
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Small example: case 1

β =

[
0
0

]

. Linear predictors:
0 0 0
0 0 0
0 0 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pairwise parameter, 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ar

gi
na

l P
(h

ig
h)

Marginal probability of center point vs. 6

Std 0/1
Std +/-
Cent 0/1
Cent +/-

Shows the asymmetry
of the standard 0/1
model.
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Small example: case 2

β =

[
1
1

]

, xo = 1, x5 = 1. Linear predictors:
1 1 1
1 1 1
1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pairwise parameter, 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ar

gi
na

l P
(h

ig
h)

Marginal probability of center point vs. 6

Std 0/1
Std +/-
Cent 0/1
Cent +/-

Standard and centered
models give opposite
behaviour as λ → ∞.

Contradicts the idea
that centered models
have “interpretable pa-
rameters.”
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Small example: case 3

β =

[
1
1

]

, xo = 1, x5 = −1. Linear predictors:
1 1 1
1 0 1
1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pairwise parameter, 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ar

gi
na

l P
(h

ig
h)

Marginal probability of center point vs. 6

Std 0/1
Std +/-
Cent 0/1
Cent +/-

Again, standard and
centered models dis-
agree.

Does the centered
model behaviour make
sense?
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Small example: case 4

β =

[
0
1

]

, xo = 0, x5 = −1. Linear predictors:
0 0 0
0 −1 0
0 0 0

0

0.5

1

M
ar

gi
na

l P
(h

ig
h)

0

0.5

1

M
ar

gi
na

l P
(h

ig
h)

0 2 4

Pairwise parameter, 6

0

0.5

1

M
ar

gi
na

l P
(h

ig
h)

0 2 4

Pairwise parameter, 6
0 2 4

Pairwise parameter, 6

Standard plus/minus
very different from
the other three.

Limiting probability
not equal to 1 or 0.

C5 probability con-
stant wrt λ.

C1 C4 C7

C2 C5 C8

C3 C6 C9
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Simulated images
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Generated RGB images with characteristics similar to the smoke data.

• 5 sizes: 1002,
2002, 4002, 6002

8002 pixels.

• 90 images at each
size.

• training, vali-
dation, and test
groups.
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Simulated images–results 1
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Parameter estimates and prediction error: plug-in vs. pseudolikelihood
(plus-minus coding).

• Parameter esti-
mates similar.

• Error rates simi-
lar.
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Simulated images–results 2
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Example predictions, 800 × 800 image.
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Simulated images–results 3
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What about plugin with different model variants?

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Pairwise parameter

P
re

di
ct

io
n 

er
ro

r 
(p

er
ce

nt
)

standard {−1, 1}
standard {0, 1}
centered {0, 1}
centered {−1, 1}
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Analysis of the smoke data
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Analysis flowchart
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choose l
to minimize 
prediction

error

model selection

images

training images validation images test images

training pixels validation pixels

fitting performance 
evaluation

best independence
model

best autologistic 
model

final performance 
results

logistic regression

autologistic 
regression

sam
ple

sam
ple
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Results 1
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Use a logistic GAM

• Each variable or interaction is a piecewise linear function
• Model search by genetic algorithm
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Results 2

Qualitative results
• Reasonable results in many cases
• Mixed smoke + cloud is still a problem
• Data quality issues (mis-labelled training/test data)

RGB image fitted probabilities (logistic) fitted probabilities (autologistic)

RGB image autologistic prediction
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Conclusions and future directions

37



Summary
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• ALR is an interesting option for binary-response regression problems with
complex associations.

• Thus far, different communities appear to have used different codings by
default.

– But this yields different models!
– Plus/minus coding is best?

• The centered model has been put forth as the “new default” ALR model

– Our work casts doubt on this choice.

• We’ve proposed a computationally-feasible analysis scheme for ALR with
large sets of hyperspectral images.
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Further work
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• First priority: finish assessments of model variants and formalize

• ALR extensions

– Let the pairwise parameter be λ(xi,xj): adaptive smoothing.
– Autobinomial model

• Related models

– MRF of Beta RVs to model probabilities directly?

• Other applications

– Ecological data
– Network data
– . . . suggestions?
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