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The talk in one slide
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• Autologistic regression extends logistic regression to dependent responses.

• It’s based on the autologistic model, a.k.a.:
– Ising model
– Boltzman machine
– Quadratic exponential binary distribution.

• Physicists use {−1, 1} coding.

• Statisticians us {0, 1} coding.

• The physicists are right.

• If you’ve used autologistic regression, you were probably doing it wrong.
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The autologistic model
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The model with 0, 1 coding
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It’s a Markov random field model for binary
random vector Z.

Can be expressed in different ways:

• Joint PMF: Pr(Z = z) ∝ exp (Q(z)), where

Q(z) =
∑

i∈V

αizi +
∑

(i,j)∈E

λijzizj

= zT α +
1
2
zT Λz

• Conditional logit:

logit (Pr(Zi = 1|Z−i)) = αi +
∑

j∼i
λijzj

Note: often let Λ = λA, where A is adjacency matrix.

Z

Z

Z
Z

unary parameter

pairwise parameter
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Autologistic regression
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If Zi is observed with covariates xi, let α = Xβ.

Q(z) = zT Xβ +
1
2
zT Λz

logit (Pr(Zi = 1|Z−i)) = xT
i β +

∑

j∼i
λijzj

Broadly applicable as an extension of logistic regression.

– Ecological modelling (spatial binary data)
– Image processing
– Dentistry
– ...
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The centered autologistic model
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Asymmetry of the standard 0, 1 model
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• n = 900

• Regular grid on the unit square.

• Zi’s coordinates are (xi1, xi2)

• Linear predictors are
αi = xT

i β = β0 + β1xi1 + β2xi2

• Set β = (−2, 2, 2)T

• Use Λ = λA

draw 1

draw 2

marginal
probability

Results of perfect sampling vs. λ:
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The centered model (still coded 0, 1)
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Standard {0, 1} model has β and λ strongly coupled.

Hard to interpret β.

Caragea and Kaiser (2009) proposed a centered “parametrization” of the model:

• Let μj be the independence expectation of Zj :

μj = E[Zj |Λ = 0] =
eαj

1 − eαj

• Centered model then has:

logit (Pr(Zi = 1|Z−i)) = xT
i β +

∑

j∼i
λij(zj − μj)

Q(z) = zT Xβ − zT Λμ +
1
2
zT Λz
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But does it help?
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Try the demonstration case with the centered, {0, 1} model:

• Somewhat reasonable behaviour for λ < 1.

• Very undesirable behaviour with large λ.

draw 1

draw 2

marginal
probability
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An alternative solution:
change the coding
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Binary variables
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• Bernoulli random variables take values {0, 1}.

• Binary random variables are categorical.
– We choose the coding.
– Could be {0, 1}, {−1, 1}, or {`, h}.

• If Z has support {`, h}n,

Y = aZ + b1, where a =
H − L

h − `
, b = L − a`

has support {L,H}n.

• We shouldn’t change coding without thinking...
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Two ways to change the coding
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Say Z ∈ {`, h}n, with PMF fZ(z) ∝ g(z; θ).

But we want our model to use coding {L,H}.

The right way

Y = aZ + b1 ⇐⇒ Z = 1
aY − b

a1

fY(y) = Pr(Y = y)

= Pr(aZ + b1 = y)

= fZ( 1
ay − b

a1)

∝ g( 1
ay − b

a1; θ)

∝ g(z; θ).

The tempting way

Just plug in y = az + b1.

Let the parameter be θ′.

f ′
Y ∝ g(y; θ′)

∝ g(az + b1; θ′)

To achieve f ′
Y = fY,

we need θ′ to compen-
sate for linear trans-
formation of z.
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A general form of the model
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Observation: maybe the asymmetry of the model is due to the coding?

• Derive the model for arbitrary {`, h} coding, we find

logit (Pr(Zi = h|Z−i)) = (h − `)
[
xT

i β +
∑

j∼i
λij(zj − μj)

]

where

μj =






0 for a standard model

`e`αi + hehαi

e`αi + ehαi
for a centered model

• Negpotential function:

Q(z) = zT Xβ − zT Λμ +
1
2
zT Λz

• Of interest: “plus/minus” codings: {−h, h}.
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Demonstration results with plus/minus coding
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Standard model, {−1, 1} coding:

• Finally see reasonable behaviour

• λ controls the balance between the unary part and the neighbour effect.

draw 1

draw 2

marginal
probability
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Theoretical results
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Model equivalence
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Different model variants have different choices of coding and centering.

Theorem 1: All autologistic variants are equivalent to any chosen stan-
dard model.

Theorem 2: Autologistic regression variants are not equivalent, in
general.

– Say f1(∙;Xγ,Ω) is an ALR with coding {L,H}
– Say f2(∙;Xβ,Λ) is an ALR with coding {`, h}
– then f2 and f1 are equivalent iff β satisfies

Xβ − a2ΩμXβ = aXγ + aΩ(b1 − μXγ)

– This is an overdetermined system in β.

• So in regression case, changing coding and/or centering changes the distri-
bution family!
– Exception: standard models with plus/minus coding are all equivalent.
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Large association behaviour
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Theorem 3: Only the standard, plus/minus models have reasonable
large-association behaviour.

– Say f is a standard model with coding {−h, h}.
– Let p∗h and p∗−h be the limiting probabilities of the two “sat-

urated” states when λ → ∞.
– then

p∗h =

exp




h

n∑

i=1

αi






exp




h

n∑

i=1

αi




+exp




−h

n∑

i=1

αi






and p∗−h = 1 − p∗h.

– And no other variants have more than one state with pos-
itive limiting probability in general.
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Conclusions
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Conclusions
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• The ALR model is an example where “plugging in” different coding is not a
trivial operation

– Different codings ⇐⇒ different distribution families.

• Coding like {−h, h} is best
– parameter interpretability
– large-λ behaviour.

• Centered model is not necessary once you use {−h, h} coding.

• What if you still want Bernoulli variables?
– start with the {−h, h} model
– transform to {0, 1} the “right” way.
– You get

logit(Pr(Zi = 1|Z−i)) = xT
i α +

∑

j∼i
λij(zj − 1

2 ),

which is a natural extension of logistic regression.
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