Better Autologistic Regression

Mark Wolters

Shanghai Center for Mathematical Sciences

Fudan University

ICSA-Canada Symposium, Vancouver August 19, 2017

What is the talk about?

- When you do *autologistic regression*, you must make certain *implementation decisions*.
- These decisions *seem trivial*, but they are actually *very important*.
- This fact is **not explored in the literature** to date.
- The *best version* of the model is *not* the one commonly used.

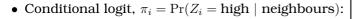
The talk is based on a paper (hopefully) soon to appear in *Frontiers in Applied Mathematics and Statistics*

Let Z be a vector of dichotomous random variables. Autologistic model (Besag JRSSB 1972, 1974):

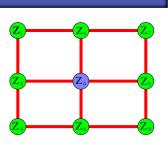
- It's a Markov Random Field
- An undirected graph, Adjacency matrix A
- PMF:

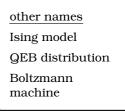
$$f_{\mathbf{Z}}(\mathbf{z}) \propto \exp\left(\mathbf{z}^T \boldsymbol{\alpha} + \frac{1}{2} \mathbf{z}^T \boldsymbol{\Lambda} \mathbf{z}\right)$$

unary term pairwise term



$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha_i + \sum_{j\sim i} \lambda_{ij} z_j$$

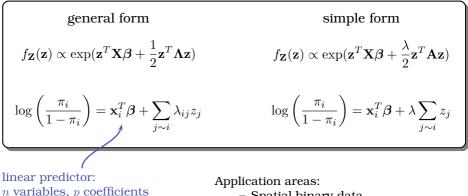




- Let $\alpha = \mathbf{X}\beta$ \Rightarrow autologistic regression (ALR)
- Let $\Lambda = \lambda \mathbf{A}$ \Rightarrow "simple" form of the model

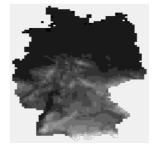
Three ALR models: *traditional*, *centered*, and *symmetric*.

1. The TRADITIONAL model: $\mathbf{Z} \in \{0,1\}^n$



- Spatial binary data
- Image segmentation
- Graph- or network- structured data

H. vulgaris data (Carl & Kühn, 2007, Ecological Modeling; Bardos et al. 2015 arXiv)

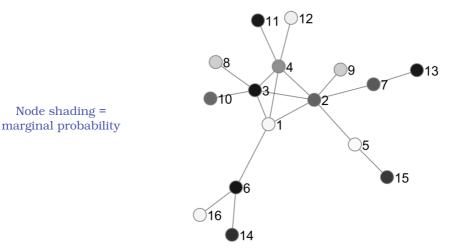


z: presence/absence

x₁: altitude

 $\Pr(Z_i = 1|x_i),$ logistic regression

Network regression, preferential attachment models (two cases)



contact: mwolters@fudan.edu.cn

ICSA-Canada 2017

1st Decision: Centering

- Traditional model has a problem
 - Fix β , increase λ , you will find Z = 1 everywhere.
 - Why? Because $\sum_{j \in J} z_j$ is never negative.
- Caragea & Kaiser (2009, JABES) "centered parametrization"

2. The CENTERED model ($\mathbf{Z} \in \{0,1\}^n$)

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\beta} + \sum_{j \sim i} \lambda_{ij} (z_j - \boldsymbol{\mu}_j), \quad \text{where} \quad \mu_j = \frac{e^{\mathbf{x}_j^T \boldsymbol{\beta}}}{1 - e^{\mathbf{x}_j^T \boldsymbol{\beta}}}$$

• μ_j is the independence expectation of the Z_j

2nd Decision: Coding

- The responses are *categorical*. Don't have to use $\{0, 1\}$ coding.
 - Statisticians: $\{0, 1\}$
 - Ising model (physics): $\{-1, +1\}$
 - Image processing: either $\{0,1\}$ or $\{-1,1\}$
- In general, could use $\{\ell, h\}$.
- If $\mathbf{Z} \in \{\ell, h\}^n$, then $\left(\frac{H-L}{h-\ell}\right) (\mathbf{Z} \ell \mathbf{1}) + L \mathbf{1} \in \{L, H\}^n$
- But autologistic models with different codings are obtained by *plugging different numbers into the same PMF*.

3. The **SYMMETRIC** model

- Just the standard model, with $\mathbf{Z} \in \{-h, h\}^n$
- No centering
- Coding symmetric around 0

A *variant*: A specific combination of coding and centering choices.

- All variants have independence when $\Lambda=0$
- Natural interpretation: a trade-off between individual and neighbourhood effects as λ_{ij} 's increase.
 - $\mathbf{x}_i^T \boldsymbol{\beta}$ controls the "endogenous" tendency of Z_i
 - Larger $\lambda_{ij} \longleftrightarrow$ more likely $Z_i = Z_j$

Some questions

- **G:** Are all of the variants equivalent?
- **Q:** Do they all adhere to the natural interpretation?
- **Q:** If differences exist, does it matter?

equivalent: parameter settings always exist that give the same PMF under two variants.

Are autologistic models equivalent?

• yes

Are autologistic regression models equivalent?

- Centered and standard models: **no**
- Centered models, different codings: **no**
- Symmetric models, different h values: yes

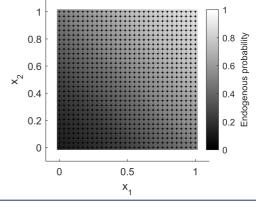
 Many variants, all called "autologistic regression models," are actually different, non-nested distribution families. "Simple" model. Let λ increase.

- Centered variants behave *counterintuitively* when λ large.
- Symmetric variants are the **only ones** with reasonable behaviour as $\lambda \to \infty$.

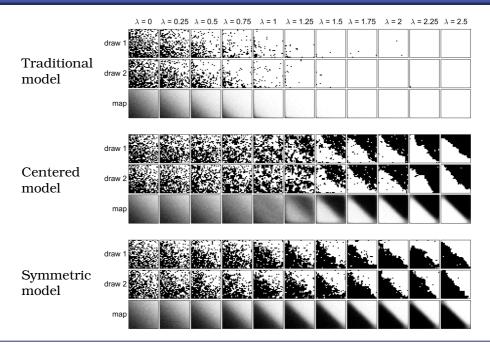
Example:

- Two predictors + intercept
- Predictors are spatial coordinates
- Square lattice

• $\beta = (-2, 2, 2)^T$



Result: Limiting Behaviour, Parameter Interpretation



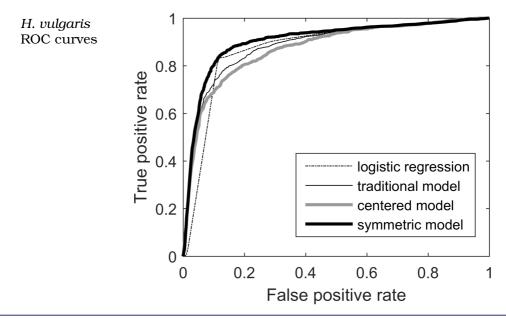
H. vulgaris fitted models

traditional

symmetric

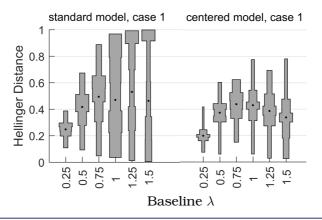
	β_0 (intercept)		β_1 (altitude)		λ (association)	
Model	\hat{eta}_0 (SE)	impact	\hat{eta}_1 (SE)	impact	$\hat{\lambda}$ (SE)	impact
logistic	2.78(0.10)	0.37	-0.79(0.028)	0.48	_	_
traditional	-2.12(0.22)	0.44	-0.16(0.026)	0.39	$1.43\ (0.066)$	0.48
centered	-1.74(0.31)	0.34	-0.17(0.040)	0.34	$1.51\ (0.050)$	0.47
symmetric	0.50(0.11)	0.40	-0.13(0.029)	0.44	$1.43\ (0.071)$	0.27

contact: mwolters@fudan.edu.cn



Does it Matter?

- Network regression example, n = 16
- Linear predictor: $\beta_0 + \beta_1 x_i$, with $x_i \sim N(0, 1)$
- Baseline model: symmetric model, $\beta = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$, fixed λ .
- Find the traditional & centered models with *minimum Hellinger distance to the baseline*.



Recommendations

- The symmetric model, with $Z_i \in \{-h, h\}$:
 - Is the only one that's easy to interpret
 - Is the only one without pathologies

We should use it unless there's a good reason to do otherwise.

- There's no reason to use centering
 - Changing the coding resolves the problem with the standard model, in a simpler way.
- If you still want Bernoulli RVs:
 - Start with symmetric model, $\mathbf{Z} \in \{-h,h\}^n$
 - Let $\mathbf{Y} = \frac{1}{2h}\mathbf{Z} + \frac{1}{2}\mathbf{1}$, do proper transformation of variables
 - You will get $Y_i \in \{0, 1\}$, and

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\gamma} + \sum_{j \sim i} \omega_{ij} \left(y_j - \frac{1}{2}\right)$$