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Screening Experiments and Nonregular Designs



Screening Experiments

 Goal of screening: select the few important predictors from the 

many available ones.

− Small number of runs

− Many variables

− Not very interested in inference or prediction

 Designs of interest:  nonregular factorial designs.

− regular designs  Either have no aliasing, or complete aliasing.

− nonregular designs  Exhibit complex aliasing.

 Benefit: can consider main effects and interactions.

 Cost: huge model set, model selection problem.



Principles of Analysis

 Effect sparsity: Only a few effects are important.

− Justifies the use of a screening experiment (few runs).

 Effect heredity: If interactions are active, then main effects 

should be active too.

− Different ways to specify.

− Heredity specification defines “interpretable” models.

− Usual default: weak heredity.  AB can only be active if A or B are 

active too.

 Effect hierarchy: Higher-order effects are less likely to be active 

than lower-order ones.



Model Selection is Difficult in Screening 
Experiments

 Key aspects of problem:

− Small n, large k

− Huge model set

− Complex aliasing

− Heredity requirement

 Why is model selection difficult in this situation?

− High model selection uncertainty (aka model aliasing).

− Exhaustive search may not be possible.

− Strong tendency toward overfitting.

− Common search methods don’t respect heredity.

 Opinion: model aliasing is not given enough attention in this 

context.  Usually multiple competing models should be identified.



Example: Plackett-Burman Designs



1 A B C D E F G H I J K A B A C A D A E … IJ IK JK

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 … 1 1 1

1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 … -1 1 -1

1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 … 1 -1 -1

1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 … 1 1 1

1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1 -1 … -1 -1 1

1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 -1 1 1 … 1 -1 -1

1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 1 -1 1 … 1 1 1

1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 … -1 -1 1

1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 … -1 1 -1

1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 … -1 1 -1

1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 … 1 -1 -1

1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 … -1 -1 1

Z  =

Design matrix X:  11 Main Effects 55 Interactions

12 runs

Plackett-Burman Designs 

 Design matrix is orthogonal array

 Add 2-way interactions, lose orthogonality

 Smallest cases:  12-run and 20-run

− PB12: 11 main effects, 55 interactions k = 66 variables

− PB20: 19 main effects, 171 interactions k = 190 variables



Plackett-Burman Designs

 With interactions included, finding active variables becomes a 

model selection problem.



Summary of Available Methods

Pros Cons

Stepwise and 

variants

-Easy to use

-No heredity

-Greedy searches

-Not theoretically sound

-Returns 1 model

Model selection 

criteria

-Optimality in some sense

-No heredity

-Multiple criteria

-Doesn’t adjust for size of 

model set

Bayesian

Methods1

-Handles heredity

-Returns distribution of 

models

-Sensitive to priors

-Interpretation of output

Groupwise 

LARS2
-Handles heredity

-Returns 1 model

-Need stopping rule

1George and McCullogh 1993; Chipman, Hamada, and Wu 1997       2Yuan, Joseph, and Lin 2007



Model Selection from Ensembles of Oversized Models



Small-Scale Example

Goal: introduce the idea and the key graphs.

Avoid the model search problem for now to illustrate ideas.

 PB12 design

 Generate  Y = 1 + 2C + 1.5CD + ,      ~ N(0,1)

 Do exhaustive search of models size p = 5  (125202 models)

 Sort all models by residual sum of squares (RSS).

 Expect most of the top models to contain (C, CD)

− There are 2904 such models

 Plot coefficients of top models… can the truth be detected?
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SAMS for Generating Model Sets



Summary of the Method

Search for lots of good, oversized models, then extract most 

common variable combinations from them.

1.  Choose maximum truth size, smax, and large model size, p> smax.

2.  Use a search heuristic to get 5000-10000 well-fitting models of 

size p.

- Use RSS as goodness measure.

3.  Use plots to visualize the model set and extract good small 

models.

The search heuristic used is based on simulated annealing, with 

two important changes.



Simulated Annealing

T = temperature (control parameter)

Reduce T on a schedule to cause 

convergence.

Problems:

 No heredity considerations

 Convergent search



SA Innovation 1:  Hereditary Move

Hereditary move

1.  Randomly choose one variable in Mold.

2.  Drop the chosen variable.

3.  Drop any other variables that no 

longer respect heredity.

4. Build the model back up to size p: 

a) Make a list of admissible variables.

b) Randomly choose one and add to 

the model.

c) repeat a) and b) until size = p.



SA Innovation 2:  Adaptive Temperature Control

 Premise:  reduce T on every accepted move, increase T on every 

rejected move

 Improving moves always accepted; this rule influences uphill moves.

− Accept: set T := rT      (0 < r < 1)    makes it harder to accept bad 

moves

− Reject: set T := aT      (r < a < 1)    makes it easier to accept bad 

moves

 Control by setting r and k, where r/ak = 1

− Call k the “search depth” – approx. k rejections per acceptance.

− Larger k, more thorough local search.

 In the code, also put a lower bound on P(accept).  Call this Pmin.

 Main idea: this control makes the search non-convergent.  Keep 

generating models indefinitely.



Simulated Annealing Model Search

 Call the modified algorithm SAMS.

 Run until ngen models are accepted.

 Default parameters:  r = 0.95,   k = 4,   Pmin=0.01,   ngen=10000.

− Performs well across wide range of problems.

 Characteristics:

− Will generate good models indefinitely

− May re-visit models

− Fast (~20sec for ngen= 10000 with PB20)



Demonstrations



DEMO 1: Another PB12 Example

 Choose true model Y = 0.5 + 1.1B + 1.5E + 0.9BG + 1EI + .

− Response 1:  ~ N(0,0.25)  Low model selection uncertainty

− Response 2:  ~ N(0,0.75)  High model selection uncertainty

 Set  = 4,  p = 7.

 Set parameters:  r = 0.95,   k = 4,   Pmin=0.001,   ngen=10000

 Run SAMS and view raster and link plots.



Low Model Selection Uncertainty
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Can optionally plot interactions on a line 

to emphasize heredity relationships



High Model Selection Uncertainty
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Clustered Raster Plot

 Perform K-means clustering on rows to make common models 

more visible:
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DEMO 2: The Blood Glucose Study

 Mixed 2- and 3-level design, 18 runs.

 Factor A: 2 levels.

 Factors B-H: 3 levels.  Use linear & quadratic terms.

 Include all valid 2-way interactions:  113 factorial effects.

 More complicated heredity specification due to quadratic terms, 

e.g.

− B2C has parents BC and B2



DEMO 2: The Blood Glucose Study

 SAMS results agree with previous studies

 Model selection uncertainty particularly clear with SAMS

 Only graphical analysis required.



DEMO 3: The Ozone Data

 Response: ozone concentration (n = 330).

 Predictors: eight meteorological variables.

 Include all interactions and squared terms (k =44).

 Observational data  this is a regression problem.

 Large n, could consider larger models.

 Can our methodology choose important variable combinations?



DEMO 3: The Ozone Data

 Run SAMS with 13-variable models.

 A particular 8-variable model stands out.



Conclusions



Conclusions

 Summary

− Developed a heredity-respecting, non-convergent search heuristic

− Developed graphical displays for model selection

− Can find good small models from an ensemble of good large ones

 Advantages

− Good performance

− Easy to use, graphical approach

− Heredity built in

− Reduces the connection between GOF and choice of model size

 The SAMS code is available as a supplement to the paper.



Future Work

 More investigation of regression problems

− Effect of collinearity, variable scaling, etc. on performance.

 Handle a wider range of heredity specifications

− Currently each effect can have any other effect(s) as parents.

− No strong heredity

− Can’t handle grouped variables (if A is in model, B must be as well)

− Can handle exclusions (if A is in model, B must not be)

 Data-driven choice of m (size of ensemble of good models)



Supporting Slides



Auto-Extraction of Best-Guess Model

 Problem:  can’t use graphs in a simulation study

 Steps:

1.  Find the 5 most frequent models of each size 1,…, in the good 

model set  (use branch and bound method)

2.  Calculate the entropy criterion for each.  

 For a model with a main effects and b interactions:

3.  Take maximum-entropy model as best



A Simulation Study



Simulation Setup

 Compare performance of methods that return a single model.

 Methods:

Oracle. Assume true model known; include each effect only if 

hypothesis test is significant.

Modified stepwise selection. Method of Wu and Hamada, 2000

AICc criterion. Select best model of size smax or smaller.  

SAMS + entropy criterion.

 Test cases:

− Use both PB12 and PB20 designs (smax =  4 and 6, resp.).

− Generate 5000 true models with random active factors, random 

coefficients.

− Set coefficients large enough to give the model some chance to be 

detected, but small enough to keep R2 to realistic levels.



Results

 Any selected model will be in one of five categories:

The truth (T). All variables correctly included; no extras.

Underfitted (U). Only correctly included variables, but some omitted.

Overfitted (O). All true variables included, with some extras.  

Partial-truth (P). Some (not all) true variables, some extras.

Wrong (W). None of the true variables included.

Partitioning of selected models (%)



Results

 Alternatively, count the total number of errors made in a model 

selection: 

− Excluding a truly-active variable.

− Including a spurious variable.

Average number of errors made


