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The parametric sniff test

Here are 6 density estimates. Which are nonparametric?
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The parametric sniff test

Here are 6 density estimates. Which are nonparametric?
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normal gamma lognormal

KDE
log-concave NPMLE

(Cule et al. 2010)

unimodal KDE

(Wolters 2012)
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A typical example: axon diameter distribution

• Small to moderate n

• Smooth and regular his-
tograms

• They tried 16 paramet-
ric forms and compared
GOF.
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Claim: There is a market among data analysts for density esti-
mators that have data-driven shape, but “look like” parametric
densities.

• This is one motivation for shape restricted estimation

• Methods so far use constraints that are simple (e.g. unimodal-
ity) or convenient (e.g. log-concavity).

fully
nonparametric

fully
parametric

ECDF,

log-concave
NPMLE

KDE Unimodal
KDE

Our
proposal?
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Simple idea: restrict the number of
inflection points

• “Waves” and “kinks” in the PDF:
concavity changes

• For increased smoothness, restrict
inflections of derivatives of f , too

– equivalently, control number of
zeros of f ′, f ′′, f ′′′, . . .

– After f ′′′, restrictions become
harder to notice.

• For a two-tailed density, maximal
smoothness achieved when f (r) has
r zero crossings.

(equivalently, when f (r) has r+2 in-
flection points)
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For decreasing densities, the k-monotonicity
concept has already covered this idea∗.

• Definition:
– 1-monotone: f nonnegative,

nonincreasing
– 2-monotone: f nonnegative,

nonincreasing, convex

– k-monotone: (−1)jf (j) nonnegative,
nonincreasing, convex,
j = 0, 1, . . . , k − 2.

• But, this only applies to convex, decreas-
ing PDFs

• What about two-tailed densities?

∗e.g., Balabdaoui & Wellner, An. Stat 2007; Chee & Wang CSDA 2014

f

f ′

f ′′

f ′′′

f (4)
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Integral of a...
• ...negative function is decreasing
• ...positive function is increasing
• ...increasing function is convex
• ...decreasing function is concave
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Method of Hall & Huang (Stat Sinica, 2002)

• Given locations of zeros, can solve by QP
• Need to search for zero locations
• Inherits KDE boundary issues.

Change KDE weights.

Developed for unimodal-
ity.

Can be used for other
derivative constraints.

Can be generalized to
work with other estima-
tor constructions.
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Quantile function approach

Let any point on the CDF be (x, p),
where p = F (x) and x = Q(p).

Claim: constraint Q′′′ > 0 sufficient
to ensure a nice looking density.

• Q′′′ > 0 guarantees unimodality
(at most one zero of f ′).

• Observation: parametric PDFs
with bounded f and convex tails
have this property.

• Constructed examples not
having this property have
waves/kinks/knees

• Still working on formal results on
zeros of f ′′, f ′′′.

F

f

f ′

f ′′

f ′′′

Q

Q′

Q′′

Q′′′

Q(4)
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A shape constraint based on Q′′′

• Estimation of f via Q introduces complexities.

• But derivatives of F and Q have relationships
(note p = F (Q(p)), then take derivatives)

• We find
Q′′′ > 0 ⇐⇒ 3 (f ′)2 − ff ′′ > 0

– Constraint applies uniformly (no searching for zero
locations)

– If f is a spline, the constraint is quadratic in parameters
∗ Max likelihood is convex programming problem
∗ Min discrepancy to ECDF is a QCQP problem

• Same constraint applies to unimodal, increasing, or decreasing
densities

• Implementation of this approach is ongoing.
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Summary

• Goal is nonparametric estimators that pass the parametric
sniff test.

• Our ideal for qualitative smoothness: f(r) has r + 2 inflection
points, r = 0, 1, 2, 3, . . . (two-tailed case)

• Practical options to get close to this ideal:
– A weighted-KDE method
– Q′′′-derived constraint looks promising

• Still many challenges:

– Hard to avoid a smoothing parameter
– Optimal construction, estimation
– Theory about estimator quality
– Confidence bounds
– Testing validity of the constraint
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