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What is the talk about?What is the talk about?

contact: mwolters@fudan.edu.cn JSM 2016 made with ffslides 2/17

Image segmentation...

of hyperspectral images...

using autologistic regression.
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And what did we learn?And what did we learn?
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• Sequential estimation of β and λ is okay.

– Estimate β first, then find best “plug in” value of λ.

• Autologistic regression may be viewed as logistic regression
with spatial smoothing.

• –1, 1 coding is essential for the procedure to work.
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Approaches to image segmentationApproaches to image segmentation
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• Assume independent pixels.

– Pixel clustering, many methods

• Spatially-aware methods

– ad hoc rules

– Model-based: Markov random fields (MRF)

∗ Latent random field: p(Z|X, θ) ∝ p(X|Z, θ)p(Z, θ)

∗ Conditional random field: just let p(Z|X, θ) be a MRF

Zi xi

Random class
label Zi has
covariates xi
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Autologistic regression (1/2)Autologistic regression (1/2)
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• Zi = class label of pixel i.

• Zi’s arranged on a graph.

• πi = Pr(Zi = high | labels of all of i’s neighbors)

• Standard model:

log
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)

= xT
i β + λ

∑

j∼i

zj where z ∈ {0, 1}

• Centered model (Caragea & Kaiser, 2009):
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(zj − μj) where
z ∈ {0, 1}
μj = E[Zj |λ = 0]
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Autologistic regression (2/2)Autologistic regression (2/2)
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• Proposed model:

log
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= 2
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

 where z ∈ {−1, 1}

Notes:

• Z is MRF-distributed
– Conditional, joint PMFs (not shown)

• Normalizing constant intractable

• Pseudolikelihood for M images, N pixels each:

PL(β, λ) =
M∏

m=1

N∏

i=1

πi

• Our application, M = 143, N > 106, and xi is high-dimensional.
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Plug-in estimation of λPlug-in estimation of λ
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Results on simulated images (1/3)Results on simulated images (1/3)
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Generating RGB images

• Random ellipses
represent “smoke”

• Color pixels using
GMRFs for R, G, B
image planes

• Different GMRF
parameters for
smoke & nonsmoke

• Classes visually
overlap

• 90 images each at
1002, 2002, 4002, 6002,
8002 pixels
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Results on simulated images (2/3)Results on simulated images (2/3)
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Parameter estimates and prediction errors:

pixels method R̂ Ĝ B̂ λ̂
error

rate (%)

1002 plug-in −2.21 −2.02 1.91 0.90 20.1

PL −2.04 −1.99 2.06 0.99 20.4

2002 plug-in −1.64 −1.35 1.71 1.00 17.7

PL −1.61 −1.30 1.70 1.19 17.7

4002 plug-in −2.05 −1.42 1.63 1.60 20.1

PL −2.08 −1.40 1.68 1.36 20.1

6002 plug-in −1.91 −1.22 1.76 1.95 20.6

PL −1.97 −1.36 1.79 1.51 20.4

8002 plug-in −1.55 −1.44 1.58 1.95 18.8

PL −1.57 −1.43 1.49 1.59 18.6
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Results on simulated images (3/3)Results on simulated images (3/3)
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Run time:

pixels method
time
(min)

1002 plug-in 0.25

PL 0.49

2002 plug-in 0.66

PL 1.5

4002 plug-in 2.8

PL 7.5

6002 plug-in 6.9

PL 20

8002 plug-in 12

PL 35

Computational considerations

• PL bottleneck:
– Optimization, costly

objective function

• Plug-in bottleneck:

– Sampling to find λ̂

• If we consider R models?
– PL: optimize R times

– Plug-in: β̂ estimated R

times, find λ̂ once.
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Results on the smoke data (1/3)Results on the smoke data (1/3)
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Logistic model

• Candidate predictors: 35 and 595 interactions

• Logistic GAM approach
– E.g. for model (2, 3, 4:5),

log

(
πi

1 − πi

)

= β0 + f2(xi2) + f3(xi3) + f4:5(xi4xi5)

where f ’s are piecewise linear (5 pieces)

• Model selection
– Genetic algorithm, model sizes ≤ 18
– Criterion: validation-set deviance

Autologistic model

• Take best logistic model and plug in λ

• Search for λ̂ to minimize test-set prediction error
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Results on the smoke data (2/3)Results on the smoke data (2/3)
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Best models

Predictor set Selected predictors plug-in λ̂

main effects 1 6 7 8 14 16 17 18 21 23 25 26 30 31
32 36

1.85

main effects &
interactions

7 30 2:3 5:26 6:11 7:36 8:20 8:22 8:25
8:31 13:15 13:23 16:31 18:23 22:36
32:36

1.75

Prediction accuracy

Error rate (%)

Model
nonsmoke
pixels

smoke
pixels overall

main effects, logistic 21.1 25.9 21.6
interactions, logistic 20.0 23.3 20.3
main effects, autologistic 17.6 23.9 18.2
interactions, autologistic 16.2 21.3 16.7

12



Results on the smoke data (3/3)Results on the smoke data (3/3)
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RGB image fitted probabilities (logistic) fitted probabilities (autologistic)

RGB image autologistic prediction
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Justifying the plug-in method (1/2)Justifying the plug-in method (1/2)
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Justifying the plug-in method (2/2)Justifying the plug-in method (2/2)
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Facts about autologistic regression models

• Standard, centered, and proposed models are not equivalent.

• Only the proposed model has reasonable behavior as λ → ∞.

Independence 
expectation

Proposed

Centered

Standard

Autologistic model’s expectation
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ConclusionsConclusions
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Summary

• Autologistic regression suitable for binary segmentation

• Model-based segmentation Computationally intensive

• Changing to plus/minus coding enables computational
shortcuts

• Using −1, 1 coding is a nontrivial change

• Need an adequate independence model for good results.
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ConclusionsConclusions
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