Overfitting and Selection Bias in Model Selection

Mark Wolters

UBC/SFU Joint Student Seminar

24-May-2006

OUTLINE

Introduction

Selection Procedures and Selection Criteria

Problem 1: Overfitting

Tendency to select models with unnecessary complexity

Problem 2: Selection Bias

Selection process introduces bias into coefficient estimates

Are There Solutions?

Take-Home Messages

Introduction

Where does model selection fit in?

• Consider sequence of simplifications in data analysis:

-Experimental design

Model selection is the point at which the real world is left behind for good.

After model selection:

- The universe is divided into "important" and "nonexistent"
- The nature of the relationship between variables is fixed.

During subsequent analysis:

- Make some confidence intervals...
- All conclusions are *conditional on model truth*.

Motivating example

12-run Plackett-Burman design with interactions (PB12)

- Industrial screening experiments.
- Suspect a few main effects and a few interactions may be active.
- By including interactions:
 - introduce complex aliasing.
 - finding active factors becomes a model selection problem.

Terms and Notation—PB12 design

- Full matrix X
- *True coefficients*, β (mostly zeros).
- Response vector, y.
- Model size, p.
 - number of variables w/o intercept.
- Model matrix, M. – formed by selecting p columns from **X** Standard linear regression model. $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \Box \ N(\mathbf{0}, \sigma^2 \mathbf{I})$
 - $-\sigma^2$ is **residual variance**

X

67×1

Μ $12 \times (p+1)$

12-run Plackett-Burman design

- Full model not estimable.
- How many different models are possible?
- Consider only models respecting effect heredity:

Selection Procedures and Selection Criteria

Elements of a model selection procedure:

- Criterion
 - How do we measure whether one model is better than another?
- Search method
 - How do we find good models?
- Information processing
 - How do we use the results of the search?

Why is model selection difficult?

- Model selection uncertainty
 - best model is subject to sampling variability.
- Large model sets
- Many possible criteria
- Hard to compare models of different sizes

Need to measure model goodness... So what is a good model?

• Simple example: three models for response Y with predictor X:

Importance of predictive power:

- Goodness-of-fit isn't useful in itself.
- "Parsimony" isn't useful in itself:

(predictive power) + (no simplicity) = POTENTIALLY USEFUL (predictive power) + (simplicity) = POTENTIALLY USEFUL

(no predictive power) + (simplicity) = **DANGEROUS**

- Adequate predictive power is essential.
- Practical considerations may justify trading predictive power for simplicity.
- "Principle of parsimony" misunderstood?

There are no parsimonious models, only parsimonious modellers.

Some important selection criteria

- Why so many different criteria?
 - "Good model" is subjective concept.
 - Difficult problem; many proposals.

Residual Sum of Squares (RSS):

- Purely goodness-of-fit based
- Proportional to maximized log likelihood
- Likelihood can be interpreted as evidence.
- Problem: always gets better as parameters added.

Mallows' C_p:

- Estimate of standardized total MSE of y.
- (n-2k) term penalizes extra parameters.

$$C_p = \frac{RSS}{\sigma^2} - (n - 2k)$$

$$RSS = \left(\mathbf{y} - \mathbf{y}\right)^T \left(\mathbf{y} - \mathbf{y}\right)$$

Some important selection criteria (cont'd)

Akaike Information Criterion (AIC)

- Based on estimate of Kullback-Liebler discrepancy between model and truth.
- Balance between likelihood and parameter penalty.

Many others, and variants, exist.

$$AIC = -2\ln\left(L\left(\boldsymbol{\beta}, \sigma^2 \,\middle| \, \mathbf{y}\right)\right) + 2K$$

Problem 1: Overfitting

OVERFITTING

When is a good model not a good model?

Definition:

- Choosing a model with unnecessary complexity.
- Usually refers to selecting a model that:
 - Includes all the truly-active variables.
 - Also includes spurious variables.

Causes of overfitting

- Criteria tend to prefer larger models.
- There are many more larger models.

Results of overfitting

- Fit is "too good"
- Poor predictive performance

OVERFITTING

SIMULATION 1: Overfitting in PB12 model selection

- True model has size 3. Active factors: (1, 2, 1*3)
- True model: $E[\mathbf{y}] = 1 + \mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_{1^*3}$ (all coefficients equal 1.0)

Consider 4 sets of models:

TRUE the true model
M1 a specific overfitted model
OVER all models overfitted by 1 variable
OTHER all other models

(1, 2, 1*3)
(1, 2, 1*3, 1*4)
(27 models)
(17187 models)

Use AIC_c as model selection criterion

Select from all models of size 3 or 4 (exhaustive search)

Repeat model selection for 250 simulated y's

Count how many times models in each set get selected.

OVERFITTING

SIMULATION 1 results:

True model vs. 27 overfitted models and 17187 wrong models:

	TRUE	OVER	OTHER
σ = 0.5	0.33	0.66	0.01
σ = 1.0	0.12	0.33	0.55

MODEL SELECTION UNCERTAINTY

- Criterion does well at choosing the true model vs. single bad option.
- But high number of options results in suboptimal choices over whole model set.
- Increasing residual variance makes matters much worse.

Problem 2: Selection Bias

What is selection bias?

Using the <u>same data</u> for <u>model selection</u>

and parameter estimation introduces bias

into coefficient estimates.

Why?

- Regression coefficients unbiased only if model is *given* and *true*.
- Well-fitting models tend to have larger coefficients; hence *selection procedures prefer models with large coefficients*.

Magnitude of bias depends on:

- Selection procedure.
- Experimental design.
- The nature of the truth.

Usual effects of selection bias:

- Coefficients too large.
- Variance estimates too small.
- Confidence interval coverage poor.

SIMULATION 2: selection bias in PB12 experiment

- Same active factors as before: (1, 2, 1*3)
- True model: $E[y] = 1 + X_1 + 0.75X_2 + 0.5X_{1^*3}$
- Residual variance: $\sigma^2 = 1$.

Use AIC_c as model selection criterion

Select from all models of size 3 or 4 (exhaustive search)

Repeat model selection for 1000 simulated y's

Simulation output:

- Distribution of β , σ estimates based on best model.
- True coverage of standard 95% confidence intervals.

SIMULATION 2 results

Reminder: $\sigma^2 = 1$

Red line = true value

Coefficient of Variable 1*3

SIMULATION 2 results (cont'd)

True coverage of 95% t-intervals on each coefficient:

	Var 1	Var 2	Var 1*3
Proportion of intervals containing true value	0.65	0.58	0.56

Estimates of residual variance in selected models:

	True value	Average estimate over selected models	
σ^2 value	1.0	0.25	

Notes on selection bias

- Selection bias has the potential to totally invalidate inference.
- Severity of problem usually difficult to work out theoretically.
- In general, expect worse problem:
 - When many models in close competition
 - When effect sizes are small

Are There Solutions?

ARE THERE SOLUTIONS?

Overfitting and selection bias are natural consequences of this style of data analysis.

- Awareness of risk is first step.
- Conservative, iterative, learning approach will help.

To combat overfitting:

- Consider multiple models; report multiple models.
- Model averaging and/or Bayesian approach.

To combat selection bias:

- Incorporate information from selection procedure into inference.
 (open research area?)
- Resolve model selection issue in preliminary stages of study.
- Use subject-matter knowledge to restrict model sets.
- Model averaging will help.

Take-Home Messages

TAKE-HOME MESSAGES

Recommendations if doing this sort of model building:

- Give model selection due attention, or risk invalid inference.
- Think carefully about relative importance of GOF, simplicity, and predictive power in your specific case.
- For huge model sets,
 - Particular choice of selection criterion not that important.
 - Best-ranked model in any trial likely not the true best.
 - Inference from a single model is perilous.
- Simulations are invaluable in exploring the issues in specific cases.

Supporting Slides

SUPPORTING SLIDES

What is "truth" really like?

- Simulations usually have several large β 's and the rest exactly zero.
 - Assumes truth can actually be described by a linear model with the chosen predictors.
 - True factors probably "small," but not exactly zero. Truth probably never like this; but sometimes close enough?
- Assumption of normal, independent, homoscedastic errors is key for regression setting.
 - Truth likely not that simple.
- Key question: is truth *close enough* to these ideals to make modelling worth while?
- Claim: deviations from the ideal will make overfitting and selection bias worse.

SUPPORTING SLIDES

SIMULATION 2—results for only when the true model was selected (124 cases):

True coverage of 95% t-intervals on each coefficient:

	Var 1	Var 2	Var 1*3
Proportion of intervals containing true value	0.77	0.81	0.77

Average estimated coefficients:

	Var 1	Var 2	Var 1*3
True value	1	0.75	0.5
Mean estimate	1.05	0.79	0.72

SUPPORTING SLIDES

Data produced from linear relationship:

