

Problem. How can additional qualitative information about a density's shape be used to obtain an improved estimate?

Our main focus. Rendering a kernel density estimate unimodal, using data sharpening.

Difficulty. Performing data sharpening involves a hard optimization problem. Standard methods (e.g. sequential quadratic programming) often fail to converge.

Our contribution. A greedy algorithm that always finds a feasible solution. Solutions are typically of good quality.

Impact. This work applies generally, and could lead to a better optimizer for handling qualitative constraints in other nonparametric settings.

Background

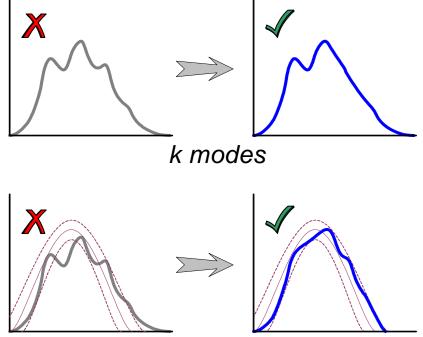
Constrained Estimation

Common examples: -isotonic regression -monotone or unimodal density estimation

Qualitative Constraints

Natural-language shape constraints on an estimator. Such constraints are not always expressible in the standard form of mathematical programming.

Examples for density estimation:



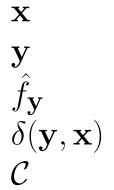
distance from a parametric family

Data Sharpening

A general strategy for constrained estimation [2], where the observed data

points (not the estimator) are modified to achieve constraint satisfaction. Sharpening is done by moving points the minimum amount, as measured by some *sharpening distance*, necessary to satisfy the constraint.

Framework: **x**



the original data, length nthe perturbed (sharpened) data vector the estimator based on data **y** a measure of distance between \mathbf{y} and \mathbf{x} the set of feasible \mathbf{y} 's

GOAL: find $\mathbf{y}^* = \underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \delta(\mathbf{y}, \mathbf{x})$

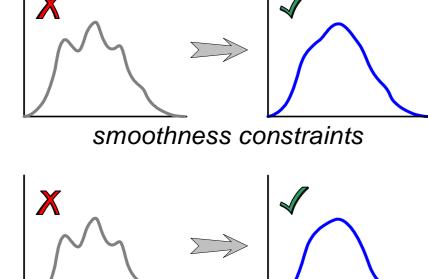
Sequential Quadratic Programming (SQP)

A deterministic, gradient-based nonlinear programming method suitable for constrained optimization with a convex objective function and convex constraints.

Difficulties with SQP

Some constraints (like unimodality) are hard to express in a form suitable for SQP codes. The problem has dimension n and could have a non-convex constraint set or multiple optima.

 \Rightarrow SQP can be slow, return poor solutions, or fail to converge.



bell shape (2 inflection points)

Optimization Heuristics for Unimodal Kernel Density Estimation by Data Sharpening

Mark A. Wolters and W. John Braun

Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada

The Sharpening Optimization Problem

The kernel density estimator (KDE) with kernel function K_h is:

 $\mathbf{y}^* = \underset{\mathbf{v} \in \mathcal{C}}{\operatorname{argmin}} \quad \sum_{i=1}^n |y_i - x_i|,$

 $\hat{f}_{\mathbf{y}}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(x - y_i).$

Using the L_1 distance, we want to find:

Where \mathcal{C} is the set unimodal KDE:

Where \mathcal{C} is the set of **y**'s that produce a $\mathcal{C} = \left\{ \mathbf{y} : \exists m \text{ s.t. } \hat{f}'_{\mathbf{y}}(x) \ge 0 \text{ if } x \le m \right\}$

Note:

 \diamond SQP only works when m is known. To solve by SQP, must iterate over a range of candidate m values.

 \diamond There is some evidence that the L_1 objective has better statistical performance than the L_2 distance for unimodal density estimation [2,4].

A Greedy Algorithm—improve()

Main Idea

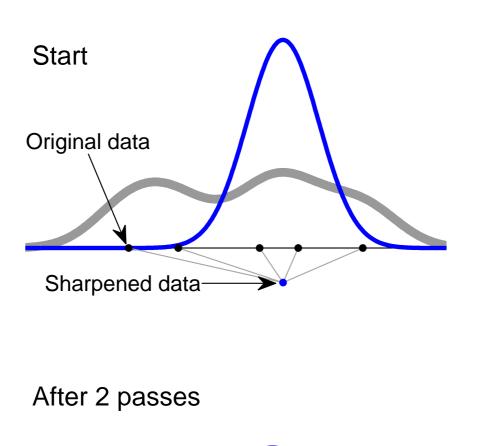
Use a heuristic approach to find good solutions while avoiding SQP's optimization difficulties. Starting with a naïve feasible solution \mathbf{y}_0 , repeatedly pass through the

data, moving points one at a time to get closer to **x**. **Preserve feasi**bility throughout.

Stop when no points are moveable, i.e., when no \mathbf{y} point can be moved closer to its corresponding \mathbf{x} point without violating the constraint.

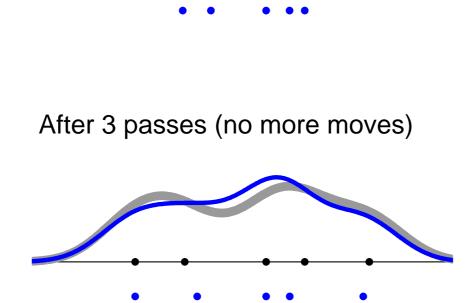
Optimization Function: $\mathbf{y} = improve(\mathbf{y}_0, \mathbf{x})$

Let y be the initial guess: $y := y_0$. Set the number of grid search steps to S := 1. WHILE there are still moveable points: FOR each point in y, in decreasing order of $|y_i - x_i|$: If feasible, move y_i closer to x_i . (Use a grid search with S steps). END FOR IF no points were moved: Double the number of grid-search steps: S := 2S. END IF END WHILE



• • •

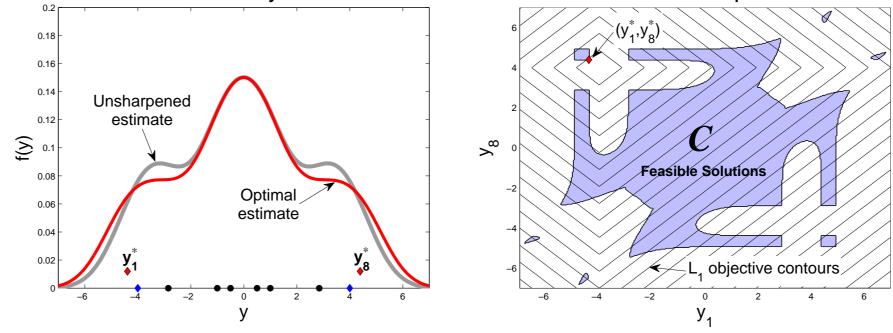
• •



After 1 pass

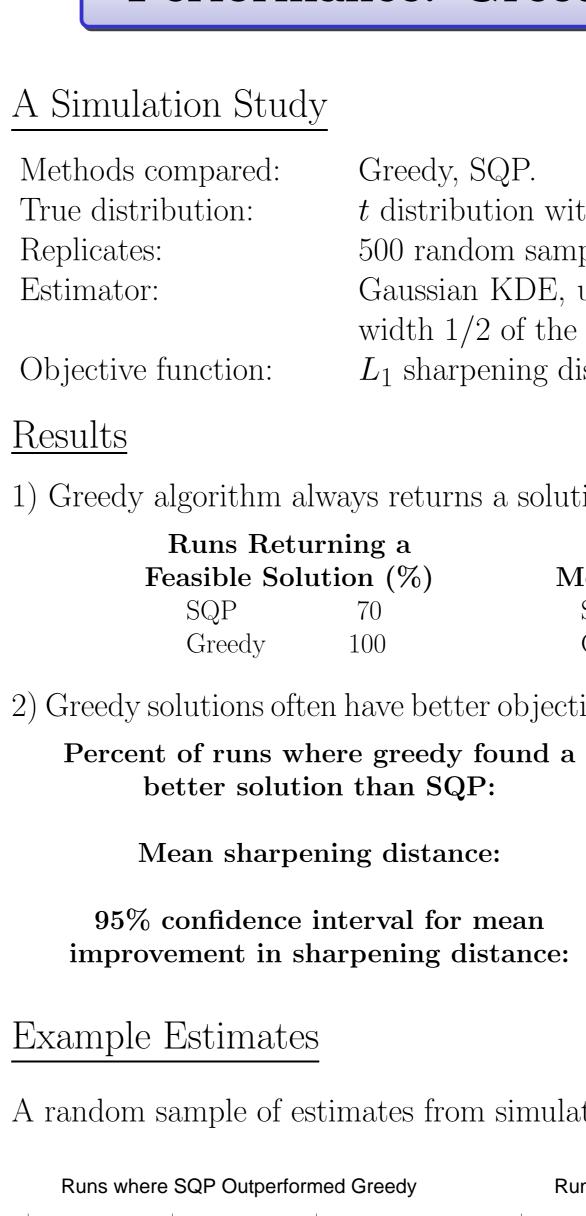
♦ As a starting value, we put all points at the highest unsharpened mode. ♦ During each pass, begin with a coarse search grid so large moves are made first. Shrinking the grid gradually helps to fine-tune the solutions.

Consider a case where sharpening is done by moving only two of eight points. Unsharpened data: $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8],$ Sharpened data: $\mathbf{y} = [y_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ y_8].$



Solution Space

Even for this simplified example, the feasible set has complex, non-convex structure, making it hard to find the optimum by standard methods.



An Illustration

Then the solution space is composed of (y_1, y_8) pairs.

Data and Density Estimates

Performance: Greedy vs. SQP

Greedy, SQP. t distribution with 5 degrees of freedom. 500 random samples of size n = 25. Gaussian KDE, unimodality constraint, bandwidth 1/2 of the normal-scale bandwidth. L_1 sharpening distance, $\sum_{i=1}^n |y_i - x_i|$

1) Greedy algorithm always returns a solution, and does so quickly.

Runs Returning a				
Feasible Solution (%)		Mean Run Time (s)		
SQP	70	SQP	89	
Greedy	100	Greedy	0.32	

2) Greedy solutions often have better objective function values than SQP. 68

better solution than SQP:

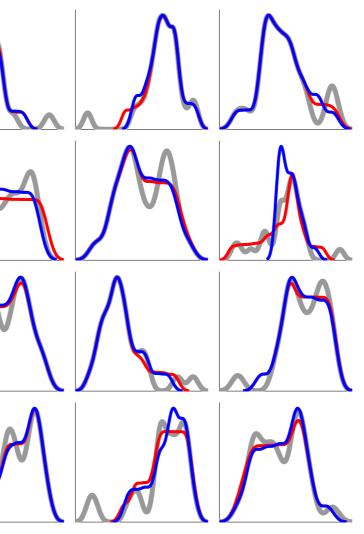
Mean sharpening distance:

SQP 3.65 Greedy 2.86

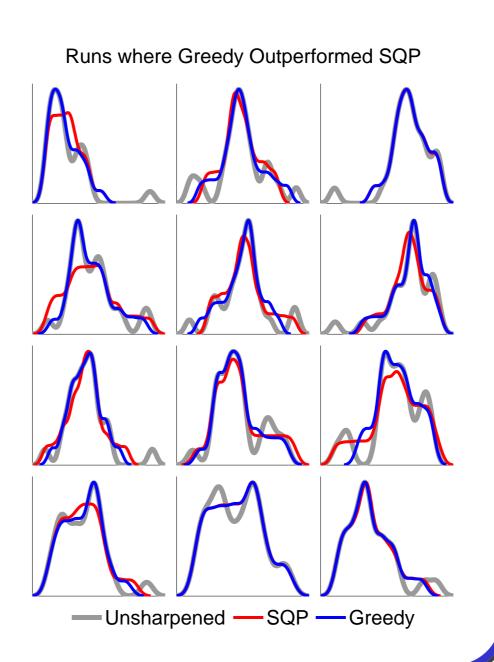
95% confidence interval for mean improvement in sharpening distance:

(0.54, 1.05)

A random sample of estimates from simulation runs:



— Unsharpened — SQP — Greedy



E
Extreme Wind
Estimator: Gauss Case 1: unsharpe Case 2: unimoda Case 3: bell-shap
[h = 1
Birth Weights
Estimator: Bivar bandwidths, sam Case 1: unsharpe Case 2: unimoda Case 3: constrain
Unsharpene
48 46 44 44 40 38 36 36 34
34 32 2000 2500 3000 3500 400 Birth Weight (
New Metaheur
The greedy algor schemes to furthe
E.g.: 1) Start wit
2) Perturb i
3) Use imp 4) Use imp
5) Repeat s
This simple algor
93% of runs fou better solution SQP.
References[1] Alibrandi and Riccia Kernel Density Maxin gineering, vol. 75, pp[2] Braun and Hall (2001 of Computational ar
 [3] Fitzsimons (1983), Ki navica vol. 72, pp. 88 [4] Hall and Kang (2005 vol. 15, pp. 73-98.
Acknowledgen Funding from the followi A Natural Sciences and H Ontario Student Assist

♦ Ontario Student Assistance Program

