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Summary

Problem. How can additional qualitative information about a density’s
shape be used to obtain an improved estimate?

Our main focus. Rendering a kernel density estimate unimodal, using
data sharpening.

Difficulty. Performing data sharpening involves a hard optimization
problem. Standard methods (e.g. sequential quadratic programming)
often fail to converge.

Our contribution. A greedy algorithm that always finds a feasible so-
lution. Solutions are typically of good quality.

Impact. This work applies generally, and could lead to a better optimizer
for handling qualitative constraints in other nonparametric settings.

Background

Constrained Estimation

Common examples: –isotonic regression
–monotone or unimodal density estimation

Qualitative Constraints

Natural-language shape constraints on an estimator. Such constraints are
not always expressible in the standard form of mathematical programming.

Examples for density estimation:

k modes

distance from a parametric family

smoothness constraints

bell shape (2 inflection points)

Data Sharpening

A general strategy for constrained estimation [2], where the observed data
points (not the estimator) are modified to achieve constraint satisfaction.
Sharpening is done by moving points the minimum amount, as measured
by some sharpening distance, necessary to satisfy the constraint.

Framework: x the original data, length n
y the perturbed (sharpened) data vector

f̂y the estimator based on data y
δ(y,x) a measure of distance between y and x
C the set of feasible y’s

GOAL: find y∗ = argmin
y∈C

δ(y,x)

Sequential Quadratic Programming (SQP)

A deterministic, gradient-based nonlinear programming method suitable
for constrained optimization with a convex objective function and convex
constraints.

Difficulties with SQP

Some constraints (like unimodality) are hard to express in a form suitable
for SQP codes. The problem has dimension n and could have a non-convex
constraint set or multiple optima.

⇒ SQP can be slow, return poor solutions, or fail to converge.

The Sharpening Optimization Problem

Unimodal Kernel Density Estimation

The kernel density
estimator (KDE) with
kernel function Kh is:

f̂y(x) = 1
n

∑n
i=1 Kh(x − yi).

Using the L1 distance,
we want to find:

y∗ = argmin
y∈C

∑n
i=1 |yi − xi|,

Where C is the set
of y’s that produce a
unimodal KDE:

C =

{

y : ∃m s.t.
f̂ ′y(x) ≥ 0 if x ≤ m

f̂ ′y(x) ≤ 0 if x ≥ m

}

Note:
⋄ SQP only works when m is known. To solve by SQP, must iterate over
a range of candidate m values.

⋄ There is some evidence that the L1 objective has better statistical
performance than the L2 distance for unimodal density estimation [2,4].

An Illustration

Consider a case where sharpening is done by moving only two of
eight points. Unsharpened data: x = [x1 x2 x3 x4 x5 x6 x7 x8],

Sharpened data: y = [y1 x2 x3 x4 x5 x6 x7 y8].

Then the solution space is composed of (y1, y8) pairs.
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Even for this simplified example, the feasible set has complex, non-convex
structure, making it hard to find the optimum by standard methods.

A Greedy Algorithm—improve( )

Main Idea

Use a heuristic approach to find good solutions while avoiding SQP’s
optimization difficulties.
Starting with a näıve feasible solution y0, repeatedly pass through the
data, moving points one at a time to get closer to x. Preserve feasi-
bility throughout.
Stop when no points are moveable, i.e., when no y point can be moved
closer to its corresponding x point without violating the constraint.

Optimization Function: y = improve(y0,x)

Let y be the initial guess: y := y0.
Set the number of grid search steps to S := 1.

WHILE there are still moveable points:

FOR each point in y, in decreasing order of |yi − xi|:
If feasible, move yi closer to xi.
(Use a grid search with S steps).

END FOR

IF no points were moved:
Double the number of grid-search steps: S := 2S.

END IF

END WHILE

Start After 1 pass

After 2 passes After 3 passes (no more moves)

Sharpened data

Original data

⋄ As a starting value, we put all points at the highest unsharpened mode.
⋄ During each pass, begin with a coarse search grid so large moves are
made first. Shrinking the grid gradually helps to fine-tune the solutions.

Performance: Greedy vs. SQP

A Simulation Study

Methods compared: Greedy, SQP.
True distribution: t distribution with 5 degrees of freedom.
Replicates: 500 random samples of size n = 25.
Estimator: Gaussian KDE, unimodality constraint, band-

width 1/2 of the normal-scale bandwidth.
Objective function: L1 sharpening distance,

∑n
i=1 |yi − xi|

Results

1) Greedy algorithm always returns a solution, and does so quickly.

Runs Returning a
Feasible Solution (%) Mean Run Time (s)

SQP 70 SQP 89
Greedy 100 Greedy 0.32

2) Greedy solutions often have better objective function values than SQP.

Percent of runs where greedy found a
better solution than SQP:

68

Mean sharpening distance: SQP 3.65 Greedy 2.86

95% confidence interval for mean
improvement in sharpening distance:

(0.54, 1.05)

Example Estimates

A random sample of estimates from simulation runs:
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Runs where Greedy Outperformed SQP

Examples and Extensions

Extreme Wind Speed Events [1]

Estimator: Gaussian KDE, bandwidth h, sample size 57.
Case 1: unsharpened (no constraint).
Case 2: unimodal constraint with non-negative support.
Case 3: bell-shaped constraint with non-negative support.
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Unsharpened Unimodal Bell Shaped

Birth Weights and Kidney Lengths in Infants [3]

Estimator: Bivariate Gaussian KDE, product kernel, normal-scale
bandwidths, sample size 102.
Case 1: unsharpened (no constraint).
Case 2: unimodal constraint (only one local maximum, no local minima).
Case 3: constrained to have unimodal conditional distributions.
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Unimodal Conditionals
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New Metaheuristics for Improved Optimization

The greedy algorithm lends itself to various iterative or population-based
schemes to further improve solution quality.

E.g.: 1) Start with standard greedy solution, y.
2) Perturb it by adding noise: yǫ = y + ǫ.
3) Use improve to make it feasible: yf = improve(y,yǫ).
4) Use improve to move it toward x: ynew = improve(yf,x).
5) Repeat steps 2-4, keeping the better of y,ynew each time.

This simple algorithm was run on the simulation data described at left:

93% of runs found a
better solution than

SQP.

Results of Iterative Method Applied to A Simulation Run

 

 

Sharpening Distances:
SQP                   1.72
Greedy               1.60
Iterated Greedy  1.08
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