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1. Introduction
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Earth-orbiting satellites help study
large-scale environmental phenomena.

Our interest: smoke from forest fires.

Data: MODIS images
1 per day, 143 days
1.2 Mp each
Centered at Kelowna,
BC
Hand-drawn smoke ar-
eas

Goal: classify pixels into
smoke/nonsmoke

Why?
Health studies
Model input or valida-
tion
Monitoring & archiv-
ing
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Data characteristics

Hyperspectral images.

Spectra at each pixel are
covariates for predicting
smoke.

High-dimensional predictor
space.

Expect spatial association.

35 image planes
+

higher order terms
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2. Modelling Framework
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Joint PMF for an image: autologistic regression (ALR)

Pr(Y = y) ∝ exp

(

(Xβ)T y +
λ

2
yT Ay

)

y Class labels (n-vector), yi ∈ {L,H}
X Model matrix (spectral data, n × p)
πi P(pixel i is smoke | neighbour pixels)
G = (E ,V) Graph structure for dependence among pixels

(regular 4-connected grid)

linear predictors
are the unary

coefficients
λ = pairwise
association
parameter

A = adjacency
matrix
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Autologistic regression

Notes:

Intractable normalizing constant

ALR is a conditional random field (CRF) model (Lafferty et al., 2001):
given X, Y is a Markov random field.

Conditional logit form:

log

(
πi

1 − πi

)

= (H − L)



xT
i β + λ

∑

j∼i

yj





logistic regression ⇐⇒ λ = 0

Spatial effect is homogeneous, isotropic

For Yi ∈ {0, 1}, the sum
∑

yj increases log-odds unless all neigh-
bours are zero.

=⇒ Estimates of β, λ are strongly coupled (Caragea and Kaiser, 2009;

Hughes et al., 2011)
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Extensions

Centered ALR model (Caragea and Kaiser (2009)) aims to correct for the
asymmetry of the pairwise term when Yi ∈ {0, 1}:

logit(πi) = xT
i β + λ

∑

j∼i

(yj − μj)

where μj = E[Yj |λ = 0] is the independence expectation.

Claim: just use Yi ∈ {−1, +1} to get the same effect.

Proposal: let λ = λij = λ(xi,xj) for adaptive smoothing.

Then

logit(πi) = 2



xT
i β +

∑

j∼i

λ(xi,xj)yj




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3. Approach to Estimation
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Existing possibilities

1. Ignore spatial association (logistic regression, large n, large p).

2. Pseudolikelihood (PL): L(β, λ) ≈
∏

img

n∏

i=1

logit(πi)

3. Monte Carlo ML

4. Bayesian approach

Problems

We have ∼ 108 pixels

We have thousands of predictors, need model selection

We’re still developing models—rapid evaluation of candidates is ben-
eficial

}
Hughes et al. use perfect sampling; rec-

ommend PL for large n.
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Proposal: plug-in estimation

a) Use independence (logistic) to get β̂
Including model selection
Sample pixels to reduce n to manageable size

b) Choose λ̂ to optimize predictive power

Rationale

Treat λ as a smoothing parameter.

Assuming independence, β̂ captures how information in X can be
used to predict Y.

For fixed β̂, tuning λ will optimally reduce noise in the predicted
probabilities.
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Proposed procedure:

model selection

images

training images validation images

test images

training pixels

validation pixels

fitting

performance 

evaluation

best independence

model

choose l

to minimize 

prediction

error

best ALR

model

final performance 

results

logistic regression

autologistic 

regression
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4. Results
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Simulated Images

Predictors: R, G, B

Random ellipses =
Class 1 (smoke)

Background = class 2
(nonsmoke)

90 images at 3 sizes:
100, 200, 400 pixels
square
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A) plug-in vs. PL

pixels method R̂ Ĝ B̂ λ̂
error

rate (%)
time
(min)

1002 plug-in −2.20 −2.00 1.95 0.45 19.2 1.2∗

PL −2.04 −1.99 2.06 0.99 23.3 0.9

2002 plug-in −1.65 −1.36 1.71 0.5 20.8 5.0∗

PL −1.61 −1.30 1.70 1.19 48.2 2.8

4002 plug-in −2.00 −1.41 1.64 0.6 20.8 21.5∗

PL −2.08 −1.40 1.68 1.36 50.5 16.1

∗ time per candidate λ value
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Example predicted probabilities

Truth Plug-in PL
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B) Effect of coding & centering
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logit(πi) = (H − L)



xT
i β + λ

∑

j∼i

(yj − μj)




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C) Preliminary smoke results

RGB image

Logistic model Autologistic model

ALR model with 50 predictors

1. Smoke-free areas: OK
2. Clouds vs. smoke: OK
3. Snow vs. smoke: OK
4. Spatial smoothing: OK
5. Smoke + Cloud: Problem
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Preliminary smoke results (continued)

RGB Logistic Autologistic

6. “Thin” smoke: Problem
7. Original masks (training data): Problem

16



5. Discussion
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Advantages of working on a data-rich prediction problem

If you get low out-of-sample prediction error, the following are of little
concern:

The “truth” of your model
The complexity or statistical efficiency of your model
whether or not your parameters are statistically significant
whether or not your parameter estimates are stable

Computational feasibility & run time become paramount.

How would things change if we’re interested in interpretation?

Trade predictive power for model simplicity.
The “plug-in” estimation approach is no longer helpful.
The issue of model centering and coding becomes critical.
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Future plans: smoke

Improve the base logistic regression model

Address “true” label ambiguity

Future plans: models

Computational improvements:

low-level code
parallelization

Revisit adaptive smoothing

A beta CRF for direct modelling of probabilities

Multi-class (autobinomial) extension
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