Detection of Smoke in Satellite Images Using Autologistic Regression

Mark Wolters University of Western Ontario

The Data & the Application

Remote Sensing Data

- Earth-Orbiting satellites Terra & Aqua
- Instrument: MODIS (moderate resolution imaging spectroradiometer)
- Big data (dimensions, volume, throughput)
- ROI: region centered on Kelowna, B.C., Canada

(http://www.ssec.wisc.edu/datacenter/terra/)

Hyperspectral Images

Application: Smoke Monitoring

- Smoke from forest fires has population health relevance
- Large area, hard to monitor.
- First-principles modelling efforts
 (wildfire model + weather model + dispersion model)
- Satellite data:
 - copious, freely available
 - wide geographic coverage
 - no altitude information
- Applications:
 - Retrospective studies
 - Model validation
 - Model initialization, updating

The Goal

Develop an automatic system for identifying smoke in MODIS imagery.

- \Rightarrow binary image segmentation
- Classes: smoke, nonsmoke
- Supervised learning, hand-drawn training images
- Methodology applicable to other applications

The true scene

Notation

- *N* Number of pixels in the image.
- d The number of spectra collected at each pixel (d = 3 for RGB image, d = 36 for hyperspectral).
- C_i The true unknown class label of pixel *i*. Let c_i take values $\{-1, +1\}$.
- \mathbf{x}_i Image features (predictors) for pixel *i*.
- C The full set of labels $\{C_1, \ldots, C_N\}$. The complete true scene.
- \mathcal{X} The full set of features $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$. The complete information from the observed image.

Incorporating "Context"

Spatial Associations

- If independent pixels \Rightarrow Use standard classification technology.
- But smoke/nonsmoke regions are *spatially smooth*.
- Many *ad hoc* ways to let pixels influence each other.
- Model-based approach: Markov random fields (MRFs).
 - graphical model
 - popular in computer vision
- Generative model: $p(\mathbf{C}|\mathcal{X}, \theta) \propto p(\mathcal{X}|\mathbf{C}, \theta)p(\mathbf{C}, \theta)$
- Discriminative model: $p(\mathbf{C}|\mathcal{X}, \theta) = \eta(\mathcal{X}, \theta) \quad \leftarrow regression$

We will use the discriminative approach.

Model $p(\mathbf{C}|\mathcal{X}, \theta)$ directly as a MRF.

Aside: Markov Random Fields (1/3)

- A collection of random variables, $\mathbf{C} = [C_1, C_2, \dots, C_n]^T.$
- Undirected graph structure.
- The graph lets us see the *Markov blanket* of any *C*.
- In the figure at right:

$$\Pr(C_1|C_2,\ldots,C_{12}) = \Pr(C_1|C_2,C_3,C_4)$$

- Could build a model by specifying 12 such relationships.
- But: are they consistent?

Aside Markov Random Fields (2/3)

Hammersley-Clifford theorem

Joint PMF can be expressed as a product of *potential functions*, one for each *maximal clique*.

 $\mathcal{M}=$ the set of maximal cliques. $\mathbf{C}_m=$ the variables in the m^{th} clique. Then

Aside: Markov Random Fields (3/3)

Notes:

Potential functions must be strictly positive. So write the joint density in *Gibbs distribution* form, $p(\cdot) \propto e^{-U(\cdot)}$

$$p(\mathbf{c}) = \frac{1}{Z} \prod_{m \in \mathcal{M}} \phi(\mathbf{c}_m)$$
$$= \frac{1}{Z} \prod_{m \in \mathcal{M}} e^{-\psi(\mathbf{c}_m)}$$
$$= \frac{1}{Z} \exp\left(-\sum_{m \in \mathcal{M}} \psi(\mathbf{c}_m)\right)$$
$$= \frac{1}{Z} e^{-U(\mathbf{c})}$$

- U(c) is called the *energy function*.
- the $\psi(\mathbf{c}_m)$ are called clique energies, clique potentials, or potential functions.
- Values of c that give *higher* energy give *lower* probability.

The Autologistic Regression Model

The Autologistic Model

- A MRF of **binary** random variables.
- Use plus/minus coding: $\mathbf{C}_i \in \{-1, +1\}.$
- Pairwise energy function
- The graph is a **regular grid**.

Parameter Interpretation

The energy function is

$$U(\mathbf{c}) = -\sum_{i \in \mathcal{V}} \alpha_i c_i - \sum_{(i,j) \in \mathcal{E}} \beta_{ij} c_i c_j.$$

So at location i:

- Positive α_i values favor +1 (smoke) class.
- Setting $\beta_{ij} > 0$ favors *locally smooth* configurations ($C_i = C_j$).

What about conditional distributions?

Let $\pi_i = \Pr(C_i = +1 | \text{all other } C)$. Then can show:

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = 2\alpha_i + 2\sum_{j\sim i}\beta_{ij}c_j$$

Parameter Interpretation (continued)

If α_i , β_{ij} known, full conditionals π_i have simple form.

So can use *Gibbs sampling* to draw from $p(\mathbf{C})$.

Note: usually set $\beta_{ij} = \beta$ for all (i, j).

Open Gibbs sampler videos

Autologistic Regression

Unary coefficients depend on covariates: $\alpha_i = \frac{1}{2} \mathbf{x}_i^T \boldsymbol{\omega}$.

Pairwise coefficients constant, as before: $\beta_{ij} = \frac{\lambda}{2}$.

Then the conditional logits become

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\omega} + \lambda \sum_{j \sim i} c_j.$$

Interpretation:

- Unary part is a linear predictor. $\mathbf{x}_i^T \boldsymbol{\omega}$ determines conditional logodds of $C_i = +1$ in the absence of spatial effects.
- Pairwise coefficient λ determines strength of neighbour effects. Setting $\lambda = 0$ reverts to standard logistic regression.

Parameter Estimation

Challenge:

- Normalizing constant Z is intractable: need 2^N terms.
- likelihood-based inference hard.

Solutions:

- Use the independence model to estimate ω and plug in. Choose λ directly based on prediction error.
- *Pseudolikelihood*: just maximize $\prod \pi_i$.
- Various sampling-based approximations have been proposed.

Prediction/Classification

Challenge:

- For fixed parameters $\hat{\omega}, \hat{\lambda}$ we seek a "best" configuration c for a given new image.
- Problematic because N too large.

Solutions:

- Maximum A Posteriori (MAP): find the \mathbf{c}^* that maximizes $p(\mathbf{C}|\mathcal{X})$
 - Attractive because don't need to know Z.
 - Hard in general: search $2^{\mathbb{N}}$ possibilities
 - Global methods exist for some cases, using graph cut methods.
- Marginal probabilities:
 - Approximate marginal $\Pr(C_i=+1).$ Use Gibbs sampler.
 - Then, assign C_i to smoke class if $Pr(C_i = +1) > 0.5$.

Model Performance

Simulated Data

- RGB images, 200×200
- Random ellipses
- Phase 1 (smoke) inside the ellipses, phase 2 (nonsmoke) outside.
- One GMRF per color per phase
- 20 training images
- 20 test images
- 20 validation images

Models Compared

- Consider five variants of the model.
- How to measure performance?

 $error \ rate = \left(\begin{array}{c} proportion \ nonsmoke \\ pixels \ misclassified \end{array} \right) + \left(\begin{array}{c} proportion \ smoke \\ pixels \ misclassified \end{array} \right)$

- 1) IPLM Independent Pixel Logistic Model
- 2) IPLM+ Independence model with neighour information
- 3) AL-1a Autologistic with estimation shortcut
- 4) AL-1b Standard autologistic model
- 5) AL-2 <u>Autologistic with adaptive pairwise coefficient</u>

Model: IPLM

- 1) IPLM Independent Pixel Logistic Model
 - Standard logistic classifier, with feature selection

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\omega}$$

- \mathbf{x}_i consists of features selected from among all interactions of R, G, B up to 3rd order.
- This produces 41 candidate variables:

```
R, G, B, R^2, G^2, B^2,
```

$$\begin{split} &RG, RB, RR^2, RG^2, RB^2, GB, GR^2, GG^2, GB^2, BR^2, BG^2, BB^2, R^2G^2, R^2B^2, G^2B^2\\ &RGB, RGR^2, RGG^2, RGB^2, RBR^2, RBG^2, RBB^2, RR^2G^2, RR^2B^2, RG^2B^2\\ &GBR^2, GBG^2, GBB^2, GR^2G^2, GR^2B^2, GG^2B^2\\ &BR^2G^2, BR^2B^2, BG^2B^2, R^2B^2G^2. \end{split}$$

- Used GA subset selection.
- Simple model (R, G, B) was best.

Sample Output—IPLM

- Error rate: 0.301
- Unary Coefficient estimates:

icept	R	G	В
4.31	-8.16	-5.53	8.29

Model: IPLM+

2) IPLM+ Independence model with neighour information

- Use predictors (R, G, B) as in IPLM.
- Add extra predictors for N, E, S, W neighbours: Rn, Gn, Bn, Re, Ge, Be, Rs, Gs, Bs, Rw, Gw, Bw

Sample Output—IPLM+

- Error rate: 0.212
- Unary Coefficient estimates:

icept	R	G	В
7.28	-3.31	-2.10	3.08
	Rn	Gn	Bn
	-2.54	-1.66	2.05
	Re	Ge	Be
	-2.41	-1.59	2.43
	Rs	Gs	Bs
	-2.05	-1.55	2.35
	Rw	Gw	Bw
	-2.47	-1.90	2.39

Model: AL-1a

3) AL-1a Autologistic with estimation shortcut

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\omega} + \lambda \sum_{j \sim i} c_j.$$

- Borrow $\hat{\boldsymbol{\omega}}$ from IPLM
- Choose $\hat{\lambda}$ to minimize classification error.

Sample Output—AL-1a

- Error rate: 0.137
- Unary Coefficient estimates: *same as IPLM*.
- Pairwise coefficient estimate: $\hat{\lambda} = 2.3.$

Model: AL-1b

4) AL-1b Standard autologistic model

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\omega} + \lambda \sum_{j \sim i} c_j.$$

– $\hat{\omega}, \hat{\lambda}$ simultaneously estimated by pseudolikelihood

Sample Output—AL-1b

- Error rate: 0.128
- Unary Coefficient estimates:

icept	R	G	В
4.15	-7.77	-5.81	8.45

– Pairwise coefficient estimate: $\hat{\lambda} = 2.68.$

Model: AL-2

5) AL-2 Autologistic with adaptive pairwise coefficient

- Let pairwise β_{ij} depend on $\mathbf{x}_i, \mathbf{x}_j$.
- Smooth more when neigbour pixels are "similar".

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i^T \boldsymbol{\omega} + \sum_{j \sim i} \underline{\phi(d_{ij})^T \boldsymbol{\gamma}} c_j.$$

a piecewise linear function with coefficients γ

- Let $d_{ij} = 1 - |\hat{\pi}_i^I - \hat{\pi}_j^I|$, where $\hat{\pi}_i^I$ is the IPLM fitted probability. \Rightarrow If IPLM assigns *i* and *j* same probability, $d_{ij} = 1$ \Rightarrow As IPLM predictions diverge, $d_{ij} \rightarrow 0$

Sample Output—AL-2

- Error rate: 0.123
- Unary Coefficient estimates:

icept	R	G	В
0.826	-1.57	-1.64	2.28

Pairwise Coefficient vs. Pixel Similarity

Summary and Next Steps

Conclusions

- A promising approach to binary image segmentation:
 - Connection with logistic regression.
 - Different estimation approaches.
 - Simpler than generative models.
- Prediction based on marginal probability estimates (Gibbs sampling) seems to work well.
- Modelling the pairwise coefficient as a function of similarity opens potential for adaptive smoothing.
- This approach could provide hands-off classification of MODIS data as they arrive.

Future work

- Verify performance on the real data!
- Extend to autobinomial model (multiple classes).
- Spatial statistics applications (medicine, ecology):
 - Accurate estimation of the unary parameters is most important.
 - Plus/minus coding and adaptive smoothing both have potential to improve parameter estimation.