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The Data & the Application
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Remote Sensing Data
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Earth-Orbiting satellites
Terra & Aqua

Instrument: MODIS (moder-
ate resolution imaging spec-
troradiometer)

Big data (dimensions,
volume, throughput)

ROI: region centered on
Kelowna, B.C., Canada

(http://www.ssec.wisc.edu/datacenter/terra/)
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Hyperspectral Images
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One image, 36
image planes

Band 1, 0.65μm

Band 36, 14μm

Bands 1, 3, 4 make RGB
image for visualization
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Application: Smoke Monitoring
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Smoke from forest fires has population health relevance

Large area, hard to monitor.

First-principles modelling efforts
(wildfire model + weather model + dispersion model)

Satellite data:

copious, freely available
wide geographic coverage
no altitude information

Applications:

Retrospective studies
Model validation
Model initialization, updating
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The Goal
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Develop an automatic system for identifying smoke in MODIS imagery.

⇒ binary image segmentation

Classes: smoke, nonsmoke

Supervised learning, hand-drawn training images

Methodology applicable to other applications

RGB working image The true scene
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Notation
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N Number of pixels in the image.

d The number of spectra collected at each pixel
(d = 3 for RGB image, d = 36 for hyperspectral).

Ci The true unknown class label of pixel i.
Let ci take values {−1, +1}.

xi Image features (predictors) for pixel i.

C The full set of labels {C1, . . . , CN}.
The complete true scene.

X The full set of features {x1, . . . ,xN}.
The complete information from the observed image.
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Incorporating “Context”
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Spatial Associations
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If independent pixels ⇒ Use standard classification technology.

But smoke/nonsmoke regions are spatially smooth.

Many ad hoc ways to let pixels influence each other.

Model-based approach: Markov random fields (MRFs).

graphical model
popular in computer vision

Generative model: p(C|X , θ) ∝ p(X|C, θ)p(C, θ)

Discriminative model: p(C|X , θ) = η(X , θ) ⇐ regression

We will use the discriminative approach.

Model p(C|X , θ) directly as a MRF.
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Aside: Markov Random Fields (1/3)
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A collection of random variables,
C = [C1, C2, . . . , Cn]T .

Undirected graph structure.

The graph lets us see the Markov
blanket of any C.

In the figure at right:

Pr(C1|C2, . . . , C12) = Pr(C1|C2, C3, C4)

• Could build a model by specifying 12
such relationships.

• But: are they consistent?
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Aside Markov Random Fields (2/3)
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Hammersley–Clifford theorem

Joint PMF can be expressed as a prod-
uct of potential functions, one for each
maximal clique.

M = the set of maximal cliques.
Cm = the variables in the mth clique.
Then

p(c) =
1
Z

∏

m∈M

φm(cm)

The MRF

Its
maximal
cliques

normalizing
constant

mth potential
function
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Aside: Markov Random Fields (3/3)
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Notes:

Potential functions must be strictly positive.
So write the joint density in Gibbs distribution form, p(∙) ∝ e−U(∙)

p(c) =
1

Z

∏

m∈M

φ(cm)

=
1

Z

∏

m∈M

e−ψ(cm)

=
1

Z
exp

(

−
∑

m∈M

ψ(cm)

)

=
1

Z
e−U(c)

• U(c) is called the energy
function.

• the ψ(cm) are called
clique energies, clique
potentials, or potential
functions.

• Values of c that give
higher energy give
lower probability.
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The Autologistic Regression
Model

13



The Autologistic Model
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A MRF of binary random variables.

Use plus/minus coding:
Ci ∈ {−1, +1}.

Pairwise energy function

The graph is a regular grid.

Pr(C = c|α, β) =
1

Z(α, β)
exp




∑

i∈V

αici +
∑

(i,j)∈E

βijcicj



 (Besag,
1974)

︸ ︷︷ ︸
unary
terms

︸ ︷︷ ︸
pairwise

terms
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Parameter Interpretation
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The energy function is

U(c) = −
∑

i∈V

αici −
∑

(i,j)∈E

βijcicj .

So at location i:

Positive αi values favor +1 (smoke) class.

Setting βij > 0 favors locally smooth configurations (Ci = Cj).

What about conditional distributions?

Let πi = Pr(Ci = +1|all other C). Then can show:

log

(
πi

1 − πi

)

= 2αi + 2
∑

j∼i

βijcj

j is a
neighbour of i
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Parameter Interpretation (continued)
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If αi, βij known, full conditionals πi have simple form.

So can use Gibbs sampling to draw from p(C).

Note: usually set βij = β for all (i, j).

Open Gibbs sampler videos
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Autologistic Regression
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Unary coefficients depend on covariates: αi = 1
2x

T
i ω.

Pairwise coefficients constant, as before: βij = λ
2 .

Then the conditional logits become

log

(
πi

1 − πi

)

= xT
i ω + λ

∑

j∼i

cj .

Interpretation:

Unary part is a linear predictor. xT
i ω determines conditional log-

odds of Ci = +1 in the absence of spatial effects.

Pairwise coefficient λ determines strength of neighbour effects. Set-
ting λ = 0 reverts to standard logistic regression.
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Parameter Estimation
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Challenge:

Normalizing constant Z is intractable: need 2N terms.

likelihood-based inference hard.

Solutions:

Use the independence model to estimate ω and plug in. Choose λ
directly based on prediction error.

Pseudolikelihood: just maximize
∏

πi.

Various sampling-based approximations have been proposed.
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Prediction/Classification
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Challenge:

For fixed parameters ω̂, λ̂ we seek a “best” configuration c for a given
new image.

Problematic because N too large.

Solutions:

Maximum A Posteriori (MAP): find the c∗ that maximizes p(C|X )

Attractive because don’t need to know Z.

Hard in general: search 2N possibilities

Global methods exist for some cases, using graph cut methods.

Marginal probabilities:

Approximate marginal Pr(Ci = +1). Use Gibbs sampler.

Then, assign Ci to smoke class if Pr(Ci = +1) > 0.5.

19



Model Performance
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Simulated Data
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RGB images, 200 × 200

Random ellipses

Phase 1 (smoke) inside the
ellipses, phase 2 (nonsmoke)
outside.

One GMRF per color per
phase

20 training images

20 test images

20 validation images
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Models Compared
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Consider five variants of the model.

How to measure performance?

error rate =

(
proportion nonsmoke
pixels misclassified

)

+

(
proportion smoke

pixels misclassified

)

1) IPLM Independent Pixel Logistic Model

2) IPLM+ Independence model with neighour information

3) AL-1a Autologistic with estimation shortcut

4) AL-1b Standard autologistic model

5) AL-2 Autologistic with adaptive pairwise coefficient
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Model: IPLM
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1) IPLM Independent Pixel Logistic Model

Standard logistic classifier, with feature selection

log

(
πi

1 − πi

)

= xT
i ω

xi consists of features selected from among all interactions of
R, G, B up to 3rd order.

This produces 41 candidate variables:

R, G, B, R
2
, G

2
, B

2
,

RG, RB, RR
2
, RG

2
, RB

2
, GB, GR

2
, GG

2
, GB

2
, BR

2
, BG

2
, BB

2
, R

2
G

2
, R

2
B

2
, G

2
B

2

RGB, RGR
2
, RGG

2
, RGB

2
, RBR

2
, RBG

2
, RBB

2
, RR

2
G

2
, RR

2
B

2
, RG

2
B

2

GBR
2
, GBG

2
, GBB

2
, GR

2
G

2
, GR

2
B

2
, GG

2
B

2

BR
2
G

2
, BR

2
B

2
, BG

2
B

2
, R

2
B

2
G

2
.

Used GA subset selection.

Simple model (R,G,B) was best.
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Sample Output—IPLM
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Error rate: 0.301

Unary Coefficient estimates:

icept R G B
4.31 -8.16 -5.53 8.29

image probability prediction
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Model: IPLM+
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2) IPLM+ Independence model with neighour information

Use predictors (R,G,B) as in IPLM.

Add extra predictors for N, E, S, W neighbours:
Rn,Gn,Bn,Re,Ge,Be,Rs,Gs,Bs,Rw,Gw,Bw
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Sample Output—IPLM+
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Error rate: 0.212

Unary Coefficient estimates:

icept R G B
7.28 -3.31 -2.10 3.08

Rn Gn Bn
-2.54 -1.66 2.05

Re Ge Be
-2.41 -1.59 2.43

Rs Gs Bs
-2.05 -1.55 2.35

Rw Gw Bw
-2.47 -1.90 2.39

image probability prediction
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Model: AL-1a
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3) AL-1a Autologistic with estimation shortcut

log

(
πi

1 − πi

)

= xT
i ω + λ

∑

j∼i

cj .

Borrow ω̂ from IPLM

Choose λ̂ to minimize classification error.
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Sample Output—AL-1a

28/35

Error rate: 0.137

Unary Coefficient estimates:
same as IPLM.

Pairwise coefficient estimate:
λ̂ = 2.3.

image probability prediction
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Model: AL-1b
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4) AL-1b Standard autologistic model

log

(
πi

1 − πi

)

= xT
i ω + λ

∑

j∼i

cj .

ω̂, λ̂ simultaneously estimated by pseudolikelihood
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Sample Output—AL-1b
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Error rate: 0.128

Unary Coefficient estimates:

icept R G B
4.15 -7.77 -5.81 8.45

Pairwise coefficient estimate:
λ̂ = 2.68.

image probability prediction
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Model: AL-2
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5) AL-2 Autologistic with adaptive pairwise coefficient

Let pairwise βij depend on xi, xj .

Smooth more when neigbour pixels are “similar”.

log

(
πi

1 − πi

)

= xT
i ω +

∑

j∼i

φ(dij)
T γcj .

Let dij = 1 − |π̂I
i − π̂I

j |,

where π̂I
i is the IPLM fitted probability.

⇒ If IPLM assigns i and j same probability, dij = 1
⇒ As IPLM predictions diverge, dij → 0

︸ ︷︷ ︸

a piecewise linear function
with coefficients γ
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Sample Output—AL-2
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Error rate: 0.123

Unary Coefficient estimates:

icept R G B
0.826 -1.57 -1.64 2.28
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Summary and Next Steps
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Conclusions
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A promising approach to binary image segmentation:

Connection with logistic regression.

Different estimation approaches.

Simpler than generative models.

Prediction based on marginal probability estimates (Gibbs sampling)
seems to work well.

Modelling the pairwise coefficient as a function of similarity opens
potential for adaptive smoothing.

This approach could provide hands-off classification of MODIS data
as they arrive.
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Future work
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Verify performance on the real data!

Extend to autobinomial model (multiple classes).

Spatial statistics applications (medicine, ecology):

Accurate estimation of the unary parameters is most important.

Plus/minus coding and adaptive smoothing both have potential to
improve parameter estimation.
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