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The Data & the Application




Remote Sensing Data

- Earth-Orbiting satellites
Terra & Aqua

- Instrument: MODIS (moder-
ate resolution imaging spec-
troradiometer)

- Big data (dimensions,
volume, throughput)

- ROI: region centered on
Kelowna, B.C., Canada
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(http://Www.ssec.wisc.edu/datacenter/er) 7
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Hyperspectral Images

One image, 36
image planes

~! Band 36, 14um

Band 1, 0.65um

Bands 1, 3, 4 make RGB
image for visualization
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Application: Smoke Monitoring

- Smoke from forest fires has population health relevance
- Large area, hard to monitor.

- First-principles modelling efforts
(wildfire model + weather model + dispersion model)

— Satellite data:

— copious, freely available
— wide geographic coverage
— no altitude information

— Applications:

— Retrospective studies
— Model validation
— Model initialization, updating
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The Goal

Develop an automatic system for identifying smoke in MODIS imagery.
= binary image segmentation

— Classes: smoke, nonsmoke

- Supervised learning, hand-drawn training images

- Methodology applicable to other applications

The true scene

- RGB working image
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Notation

Number of pixels in the image.

The number of spectra collected at each pixel
(d = 3 for RGB image, d = 36 for hyperspectral).

The true unknown class label of pixel i.
Let ¢; take values {—1,+1}.

Image features (predictors) for pixel .

The full set of labels {C4,...,Cn}.
The complete true scene.

The full set of features {xi,...,xn}.

The complete information from the observed image.
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Incorporating “Context”




Spatial Associations

- Ifindependent pixels = Use standard classification technology.
- But smoke/nonsmoke regions are spatially smooth.
- Many ad hoc ways to let pixels influence each other.

- Model-based approach: Markov random fields (MRFs).

— graphical model
— popular in computer vision

- Generative model: p(C|X,0) x p(X|C,0)p(C, )
- Discriminative model: p(C|X,0) = n(X,0) <= regression
We will use the discriminative approach.

Model p(C|X, 0) directly as a MRF.
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Aside: Markov Random Fields (1/3)

— A collection of random variables,
C=[C1,Cs,...,C,]7.

— Undirected graph structure.

— The graph lets us see the Markov
blanket of any C.

- In the figure at right:

Pr(01‘02, ey 012) = Pl”(01|02, 03, C4)

\/ e Could build a model by specifying 12

such relationships.
e But: are they consistent?
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Aside Markov Random Fields (2/3)

Hammersley-Clifford theorem
The MRF
Joint PMF can be expressed as a prod-

uct of potential functions, one for each
maximal clique.

M = the set of maximal cliques.
C,, = the variables in the m'™ clique.

Then / D maxsnal
:l H o (Cm) [ /_\ cliques
Z e
AN R

normalizing m*™ potential
constant function
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Aside: Markov Random Fields (3/3)

Notes:

Potential functions must be strictly positive.
So write the joint density in Gibbs distribution form, p(-) o< e~V ()

plc) = 7 H P(cm) e U(c)is called the energy
meM function.

= 1 H e~ ¥iem) e the (c,,) are called

Z meM clique energies, clique

] potentials, or potential
= exp (_ Z o Cm)> functions.

mem e Values of ¢ that give

1 _U(e) higher energy give

7 € lower probability.
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The Autologistic Regression
Model




The Autologistic Model

1
Pr(C = C|a,ﬁ) = m exp Lezvazcl + (%:Eg ﬁ”clc‘j

R —
unary pairwise
terms terms

-—-------
— A MRF of binary random variables. I
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Parameter Interpretation

The energy function is

- E QiCi — E B'chzcg

i€V (i,4)€E
So at location i:
- Positive «; values favor +1 (smoke) class.

- Setting ;; > 0 favors locally smooth configurations (C; = Cj).

What about conditional distributions?

Let m; = Pr(C; = +1|all other C'). Then can show:

™
log <1_> =20 + 225”6]

Jrvi

NU— jisa

neighbour of ¢
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Parameter Interpretation (continued)

If «;, B;; known, full conditionals 7; have simple form.
So can use Gibbs sampling to draw from p(C).

Note: usually set §;; = g for all (¢, j).

Open Gibbs sampler videos
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Autologistic Regression

Unary coefficients depend on covariates: o; = x; w.

K3
Pairwise coefficients constant, as before: 3;; = %

Then the conditional logits become

s
10g<1_ﬂ_i> :xiTw—i—)\ch.

g

Interpretation:

- Unary part is a linear predictor. x}w determines conditional log-
odds of C; = 41 in the absence of spatial effects.

— Pairwise coefficient \ determines strength of neighbour effects. Sei-
ting A = 0 reverts to standard logistic regression.
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Parameter Estimation

Challenge:

- Normalizing constant Z is intractable: need 2" terms.
- likelihood-based inference hard.

Solutions:

- Use the independence model to estimate w and plug in. Choose A
directly based on prediction error.

- Pseudolikelihood: just maximize [] ;.

— Various sampling-based approximations have been proposed.
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Prediction/Classification

Challenge:

- For fixed parameters w, A we seek a “best” configuration c for a given
new image.

— Problematic because N too large.
Solutions:

— Maximum A Posteriori (MAP): find the c* that maximizes p(C|X)
- Attractive because don’t need to know Z.
- Hard in general: search 2" possibilities

- Global methods exist for some cases, using graph cut methods.

- Marginal probabilities:
- Approximate marginal Pr(C; = +1). Use Gibbs sampler.
- Then, assign C; to smoke class if Pr(C; = +1) > 0.5.
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Model Performance




Simulated Data

- RGB images, 200 x 200
- Random ellipses

- Phase 1 (smoke) inside the
ellipses, phase 2 (nonsmoke)
outside.

- One GMRF per color per
phase

- 20 training images
- 20 test images

- 20 validation images
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Models Compared

— Consider five variants of the model.

- How to measure performance?

error rate — < proportion nonsmoke ) ( proportion smoke )

pixels misclassified pixels misclassified

1) IPLM Independent Pixel Logistic Model

2) IPLM+ Independence model with neighour information

3) AL-1a Autologistic with estimation shortcut

4) AL-1b Standard autologistic model

5) AL-2  Autologistic with adaptive pairwise coefficient
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Model: IPLM

1) IPLM Independent Pixel Logistic Model

- Standard logistic classifier, with feature selection

T T
1 — x!
0g<1—ﬂ'i> X, w

- x; consists of features selected from among all interactions of
R, G, B up to 3rd order.

- This produces 41 candidate variables:

R,G,B,R* G* B2,
RG,RB, RR? RG? RB? GB,GR? GG?,GB? BR? BG? BB? R?°G? R’B? G*B?
RGB, RGR?, RGG?,RGB? RBR? RBG? RBB? RR>G? RR?B? RG?’B?
GBR?,GBG? ,GBB?,GR*G? GR?B?,GG*B?
BR?G?, BR’B?, BG*B?* R*B*G>.

- Used GA subset selection.

- Simple model (R, G, B) was best.
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Sample Output—IPLM

— Error rate: 0.301 image probability prediction

— Unary Coefficient estimates:

icept R G B
431 -8.16 -5.53 8.29
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Model: IPLM+

2) IPLM+ Independence model with neighour information

- Use predictors (R, G, B) as in IPLM.

- Add extra predictors for N, E, S, W neighbours:
Rn,Gn, Bn, Re,Ge, Be, Rs,Gs, Bs, Rw, Gw, Bw
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Sample Output—IPLM+

- Error rate: 0.212

— Unary Coefficient estimates:

icept R G B

7.28 -3.31 -2.10 3.08
Rn Gn Bn
-2.54 -1.66 2.05

Re Ge Be
-241 -1.59 243

Rs Gs Bs
-2.05 -1.55 2.35

Rw Gw Bw
-2.47 -1.90 2.39

image
_,&;\w e,

probability prediction
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Model: AL-1a

3) AL-1a Autologistic with estimation shortcut

T
10g<1_ﬂ_i> :xfw—i—)\ch.

g

- Borrow w from IPLM

— Choose )\ to minimize classification error.
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Sample Output—AL-la

— Error rate: 0.137 image probability prediction

- Unary Coefficient estimates:
same as IPLM.

- Pairwise coefficient estimate:
A= 23.
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Model: AL-1b

4) AL-1b Standard autologistic model

Uy
log(l_ﬂ_i> :xfw—i—)\ch.

g

- &, X simultaneously estimated by pseudolikelihood
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Sample Output—AL-1b

- Error rate: 0.128 probability prediction

image

- Unary Coefficient estimates:

icept R G B
415 -7.77 -5.81 8.45

— Pairwise coefficient estimate:

A = 2.68.




Model: AL-2

5) AL-2 Autologistic with adaptive pairwise coefficient

- Let pairwise §;; depend on x;, x;.

- Smooth more when neigbour pixels are “similar”.

e
log (1 — m) =x w+ Z (dij) e,

i N——
a piecewise linear function
with coefficients v

- Let dij =1- |7ATII —7ATJI-|,

where 7! is the IPLM fitted probability.
= If IPLM assigns ¢ and j same probability, d;; =1
= As IPLM predictions diverge, d;; — 0
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Sample Output—AL-2

Coefficient value

— Error rate: 0.123

- Unary Coefficient estimates:
icept R G B

0.826 -1.57 -1.64 2.28

Pairwise Coefficient vs. Pixel Similarity

00 05 10 15 20 25 30 35

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Pixel similarity

image

probablhty predlctlon
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Summary and Next Steps




Conclusions

- A promising approach to binary image segmentation:
- Connection with logistic regression.
- Different estimation approaches.
- Simpler than generative models.

- Prediction based on marginal probability estimates (Gibbs sampling)
seems to work well.

— Modelling the pairwise coefficient as a function of similarity opens
potential for adaptive smoothing.

— This approach could provide hands-off classification of MODIS data
as they arrive.
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Future work

- Verify performance on the real data!
- Extend to autobinomial model (multiple classes).

- Spatial statistics applications (medicine, ecology):
— Accurate estimation of the unary parameters is most important.

— Plus/minus coding and adaptive smoothing both have potential to
improve parameter estimation.
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