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Summary
Adding shape constraints to a nonparametric estimator:
• eliminates unrealistic waves and bumps in the estimate
• maintains more shape flexibility than parametric families
• improves statistical performance in small samples

The scdensity package implements two related methods for
enforcing constraints on a kernel density estimator (KDE):

1. The weighted KDE method (Hall and Huang, 2002)
2. The adjusted KDE method (Wolters and Braun, 2018)

It unifies the methods under a common optimization
scheme and makes estimation numerically stable.

The package makes it easy to get estimates with many dif-
ferent constraints, using familiar kernel methods.

Which Constraints Can it Handle?
In these examples, set the bandwidth to h <- bw.SJ(x)/2.

Unimodal

scdensity(x, bw=h, constraint="unimodal")

Derivative sign changes
are “important points.” If

their locations are
known, the optimization
problem is a quadratic

program (QP).
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truth

●

Two inflection points

scdensity(x, bw=h, constraint="twoInflections")

Sign changes of ƒ ′′.

If important points are
not known, the QP is run
inside a search routine to

find them.
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Three inflection points in ƒ ′

scdensity(x, bw=h, constraint="twoInflections+")

Sign changes of ƒ ′′′.

Restricting sign changes
of higher derivatives

enforces greater
smoothness.
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Symmetric

scdensity(x, bw=h,
constraint=c("twoInflections+","symmetric"))

multiple constraints can
be combined.
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Bimodal

scdensity(x, bw=h, constraint="bimodal")

In this case the important
points are the locations
of the modes and their
intervening antimode.
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Monotone, and/or bounded

scdensity(x, bw=h,
constraint=c("monotoneRightTail","boundedLeft"),
opts=list(lowerBound=0, rightTail=50))

This estimate has:
• negligible probability

mass to the left of zero
• monotonicity to the

right of the original es-
timate’s median.

constrained
KDE
truth

How does it work?

A weighted KDE is ƒs(|p) =
1
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, where s are the kernel centers and p are the weights.

The data are x. We do not require kernel centers to be located at x!

We can express the integrated squared error (ISE) between any two weighted KDEs as a quadratic form in the weights.

Initial estimate

standard KDE
observed data Start with the standard KDE, ƒx(|

1
npunif)

(where punif =
1
n1)

This is the chondrite data (percent Si in 22
meteorites, Good and Gaskins, 1980). We
seek a bimodal estimate.

Binning step

binned approximation
bin centers (weight > 0)
bin centers (weight = 0)

1. Set up a uniform grid of kernel centers, s.
2. Find w̃ that minimizes SE(ƒs(|w), ƒx(|punif))

(this is a QP with no shape constraints)
3. Subdivide any intervals where ƒx is poorly

approximated.
4. Repeat 2 & 3 until approximation is good.

End result:

• ƒs(|w̃) closely approxi-
mates ƒx(|punif).

• w̃ contains both zero and
nonzero weights.

Estimation step (weighted KDE method)

bimodal estimate

If we use only the nonzero-weighted centers, we have the
weighted KDE method.

The method cannot modify density shape away from x
points.

Estimation step (adjusted KDE method)

bimodal estimate

If we use all centers, we have the adjusted KDE method.

This method is more flexible and can handle more con-
straints.

Find new weights, v̂
that minimize

SE(ƒs(|v), ƒs(|w̃)),
subject to shape

constraints

The QPs in the binning and estimation steps have the same form.
The estimation step is run inside a search to find the best mode locations.

Examples
S&P 500 log returns (Turnbull & Ghosh, 2014).

Constraints: twoInflections+, symmetric around zero.

Smooth tails

No restriction on tail
weight

Fixed mode location

log return
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Axon diameters (Sepehrband et al., 2016).

Constraint: twoInflections+.

Original authors
compared 16 parametric
options

scdensity provides a
“parametric-like” shape

Also shown: log-concave
estimates from
logcondens, smooth
unimodal estimate from
episplineDensity.
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Q & A
Is it fast?

– A fraction of a second for N(0,1) data with unimodal
constraint.

– Several seconds for t5 data with twoInflections+.

Is it robust?

– The QP problem is convex, but can be ill-conditioned.
The package checks for problems and remedies them.

– Constraint systems are occasionally infeasible. The
package checks feasibility and handles problems
gracefully.

What about asymptotics?

– Because we use the usual kernel density estimator, we
can borrow its asymptotic behavior. If the constraints
are valid, necessary shape adjustments should shrink
to zero.
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