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Summary How does it work? Examples
Adding shape constraints to a nonparametric estimator: . . _ 1 (XS . S&P 500 log returns (Turnbull & Ghosh, 2014).
« eliminates unrealistic waves and bumps in the estimate A weighted KDE is fs(x|p) = EZle ) where s are the kernel centers and p are the weights. Comstrainmte: tuoInflectionss. svmmetric around zero
e maintains more shape flexibility than parametric families =1 ’ »3Y '
e improves statistical performance in small samples The data are x. We do not require kernel centers to be located at x! g 4 sensmdio !
The scdensity package implements two related methods for We can express the integrated squared error (ISE) between any two weighted KDEs as a quadratic form in the weights. Smooth tails -
enforcing constraints on a kernel density estimator (KDE): No restriction on tail ®
1. The weighted KDE method (Hall and Huang, 2002) @ Initial estimate weight 7 o
2. The adjusted KDE method (Wolters and Braun, 2018) Fixed mode location S
It unifies the methods under a common optimization ) itbasnedrire%zgg Start with the standard KDE, fx(x|% punif) s
scheme and makes estimation numerically stable. (where punit = ~1) |I
a ,
. . . . ° _ s
The package makes it easy to get estimates with many dif- This is the chondrite data (percent Si in 22 : w — 1
ferent constraints, using familiar kernel methods. meteorites, Good and Gaskins, 1980). We -010  -005  0.00 0.05 0.10
seek a bimodal estimate. log return
Axon diameters (Sepehrband et al., 2016).
X HX X XX X X X X XK X
[ ] ] . Constraint: twoInflections+.
Which Constraints Can it Handle? B Original authors
o ] = scdensity H
In these examples, set the bandwidth to h <- bw.SJ(x)/2. & o - lewwe (C)gfc?é)r?sl’ed 16 parametric
o 7 ' — epispline
Unimodal @ Binning step 2 scdensity provides a
i i ' ---  binned approximation g o« “parametric-like” shape
scdensity(x, bw=h, constraint="unimodal") ; E.etdupi atEanorm lgrl.d of I;;Enel centers, s. +  bin centers (weight > 0) N End result: s - Also shown: log-concave
. Find w that minimizes x|w), fx(x i i ight = i\ ~ : = :
— consvaned <" ~____| _ Derivative sign changes (this is a QP with no shape c((])c:(stll’aigwt];x)( IPunif)) +  bin centers (weight ’\0) i e fs(x|W) closely approxi- ) estimates from
"""" wh are lmportant points.” If 3. Subdivide any intervals where fx is poorl /\ 7\ Foo mates fx(x|Punit). ° Logcondens, smooth
' ‘ their locations are : , y x poorly [\ /N PR e W contains both zero and g b——ull - unimodal estimate from
known, the optimization approximated. _ . o ,’l ‘.\ / . ,’I \ nonzero weights. ! ‘ ‘ ‘ episplineDensity.
problem is a quadratic 4. Repeat 2 & 3 until approximation is good. e N/ - \, 05 10 15 20
program (QP) " Sl diameter
X AKX X XX X X X X XX X \
Two inflection points Q & A
scdensity(x, bw=h, constraint="twoInflections") @ Estimation step (weighted KDE method) @ Estimation step (adjusted KDE method) Is it fast?
— conswained | Sign changes of £, — bimodal estimate ) — bimodal estimate - A fraction of a second for N(0O, 1) data with unimodal
KoE =7\ | Find new weights, v constraint.
,,,,,,, by : e . :
If important points are ISES?a(t i’n')n]'cn}'Zl(?N N - Several seconds for ts data with twoInflections+.
not known, the QP is run sIX|V), Js(X|W)), Is i
! : itr t?
inside a search routine to subject to _shape s obus
find them. constraints - The QP problem is convex, but can be ill-conditioned.
M NN The package checks for problems and remedies them.
o DRRRIANY x o XX XX X X 08K X - Constraint systems are .olccasionally infeasible. The
package checks feasibility and handles problems
. . . . If we use only the nonzero-weighted centers, we have the If we use all centers, we have the adjusted KDE method. gracefully.
Three inflection points in f weighted KDE method -
_ _ . : This method is more flexible and can handle more con- What about asymptotics?
scdensity(x, bw=h, constraint="twoInflections+") The method cannot modify density shape away from x straints. . :
points. - Because we use the usual kernel density estimator, we
— conswrained " . —— | __Sign changes of f”/. can borrow its asymptotic behavior. If the constraints
KDE 4
"""" ruh S The QPs in the binning and estimation steps have the same form. are valid, necessary shape adjustments should shrink
/ ) Restricting sign changes The estimation step is run inside a search to find the best mode locations. to zero.
of higher derivatives
enforces greater
smoothness.
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