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Problem Statement 
 

A total of N patients will be classified into groups A, B, C, and D simultaneously by 

each of two devices.  The first device is the gold standard; its outcome will be called 

the true state.  The second device is a new technology; its outcome will be called the 

measured state.  The goal of the study is to assess the performance of the new 

device relative to the standard. 

 

The four categories (A, B, C, D) are disease states, with state A being normal.  The 

true state of any patient in the study will not be known with certainty before the test. 

Let the outcome of any trial be denoted by a two-letter combination, with the first 

character indicating the true state, and the second character indicating the measured 

state.  So, for example, outcome AB indicates a person who was truly normal but 

was measured to be in disease state B.  Note that there are 16 possible outcomes for 

any individual: 

 

AA, BB, CC, DD, AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC. 

 

These outcomes have been ordered with the correct classifications (AA, BB, CC, DD) 

first; if the new device performs well, the large majority of the trials should result in 

one of these four outcomes.  The remaining 12 classifications constitute different 

types of errors.  

 

From a statistical perspective, each patient may be viewed as having a prior 

probability i of eventually being classified into outcome i.  That is,  

 

P(a subject’s test results are AA) = AA 

P(a subject’s test results are BB) = BB 

P(a subject’s test results are CC) = CC, 

 

and so on for the 16 possible outcomes.   

 

In this framework, the goal of the experiment is to estimate the classification 

probabilities, i.   Viewing each category individually, each i is a binomial proportion.  

Viewing all 16 categories together, the vector  = (AA, BB, … ,DC) is a set of 

multinomial probabilities1 such that i = 1.     

 

                                           
1 The data from this experiment—the number of counts in each of the 16 outcomes—may be 
viewed as a sample from a multinomial distribution with N trials and probability vector .  

Multinomial distributions arise when independent, identical trials are repeated with fixed 
probabilities of more than two outcomes (e.g., the results of 100 rolls of a die is a sample from a 
multinomial distribution with N = 100 and i = 1/6, i = 1, 2, … 6).  The number of outcomes in 

each specific category has a binomial distribution. 
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Based on this description of the problem, the following objectives can be stated for 

the statistical analysis to follow: 

1. Describe a method for estimating the i’s, and give formulas for calculating the 

uncertainty associate with the estimate. 

2. Provide methods for determining the sample size N, such that the multinomial 

probabilities  may be estimated with sufficient precision. 

3. Use the above methods to analyze the experiment and make recommendations 

on sample size and analysis methods. 

 

These objectives will be considered in the following sections.  The starting point is to 

review concepts related to confidence intervals for binomial proportions. 

 

 

Background 
 

The estimate of each i will be called pi.  Each pi can be calculated straightforwardly; 

it is just the proportion of the N subjects that had outcome i.  Let ni be the number 

of subjects with outcome i.  Then  

 

 i

i

n
p

N
 . (1) 

 

Once the 16 pi’s have been calculated, the performance of the new device can be 

assessed in whatever ways are considered appropriate.  For presentation purposes, it 

is probably useful to show the results of the experiment in the form of a 4x4 

contingency table, as in Table 1. 

 

 

Table 1.  A display of results from the experiment. 

 

 a) as counts b) as proportions 

 

 

 

In the above tables, the “dot notation” has been used to represent the row and 

column totals (e.g. pA. is the sum of the proportions of subjects with true state A). 

Once the table has been constructed, any other desired probabilities can be 

calculated.  For example: 

 Unconditional probabilities can be read directly:   

P(truth is A and measured is C) = pAC 

 Conditional probabilities can be calculated easily: 

P(measure C, given patient is A) = pAC/pA. 

  Measured  

   A B C D Sum 

T
r
u

e
 A pAA pAB pAC pAD pA. 

B pBA pBB pBC pBD pB. 

C pCA pCB pCC pCD pC. 

D pDA pDB pDC pDD pD. 

  p.A p.B p.C p.D  

 

 

  Measured  

   A B C D Sum 

T
r
u

e
 A nAA nAB nAC nAD nA. 

B nBA nBB nBC nBD nB. 

C nCA nCB nCC nCD nC. 

D nDA nDB nDC nDD nD. 

  n.A n.B n.C n.D  
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 A collapsed 2x2 table can be constructed.  This could be useful, for example, if 

one wants to speak in the familiar terms of sensitivity and specificity for a 

particular disease state.  Consider, for example, state A: 

  Measured 

  A not A 

T
r
u

e
 A pAA pAB+pAC+pAD 

not 

A 
pBA+pCA+pDA 

pBB+pBC+pBD 

+pCB+pCC+pCD 

+pDB+pDC+pDD 

 

 

Confidence Interval for a Proportion 
 

The above points illustrate that the proportions pi, as a group, constitute a thorough 

summary of the performance of the new device relative to the gold standard.  The 

simple calculations involving the pi’s are of little use, however, if the proportions are 

estimated with insufficient precision.  The point of studying the effect of sample size 

is to ensure that the estimates pi are sufficiently precise to permit the new device’s 

performance to be assessed with a reasonable level of certainty. 

 

One measure of precision for a statistical estimate is the confidence interval.  For a 

proportion such as pi, the usual interval used to provide reasonable bounds is 

calculated as follows:   
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 1
1

, , 1 2   where   i i

i i i i i i

p p
p d p d d

N



     , 

Or, equivalently: 

  
 1
1

1 2
i i

i i

p p
p

N



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Above, 

N is the number of trials (the sample size), 

i is the significance level for this interval,  

di is the half-width of the interval, and 

 is the cumulative distribution function (CDF) for the standard normal 

distribution; -1 is the inverse of the standard normal CDF2. 

 

The above interval is called a two-sided 100(1-i)% confidence interval for i.  The 

proper interpretation of the interval (pi-di, pi+di) is as follows:  in hypothetical 

repetitions of the experiment, if equation (2) were always used to construct a 

confidence interval, the intervals so constructed would, on average, enclose the true 

value of i about 100(1-i)% of the time3. 

                                           
2 The quantity -1(1-/2) is the upper 100(/2)th percentile of the standard normal distribution; it 

is sometimes written as z/2. 
3 The interval formed by (2) is the standard one used for binomial proportions when the sample 
size is moderately large and the true proportion is not too close to 0 or 1.  It is based on a normal 
approximation.  Other intervals could be formed based on the true underlying binomial distribution 
if necessary.  See, for example, the Clopper-Pearson interval described in, e.g., Hollander and 
Wolfe (1999). 
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The quantity 100(1-i)% is called the confidence level, or the coverage probability, 

for the interval.  For a given -level, the width of the interval (or its half-width, di) 

may be considered a measure of the precision with which the estimate pi 

approximates the true proportion i. 

 

Example 

 

Q:  Say that a sample of N = 100 people are tested.  27 of them are found to be in 

group BB, while 73 are in other groups.  What is the 95% confidence interval ( = 

0.05) for the proportion BB? 

 

A:  The estimated proportion is pBB = 0.27.  Using equation (2), the confidence 

interval is (0.183, 0.357).  The half-width dBB is 0.087.  So at the 0.05 significance 

level, the precision of the estimated proportion is plus/minus about 9 percentage 

points. 

 

The Multiple Comparisons Problem 
 

The standard confidence interval (2) could be applied to all 16 estimated proportions 

to provide upper and lower bounds.  This would provide some measure of precision 

for each estimate, and would thus constitute a major improvement over only 

reporting the point estimates.  Furthermore, equation (2) involves N, so it is possible 

to use it to try to determine the required sample size. 

 

When dealing with multiple proportions, the above comments are subject to two 

major complications: 

1. If each of the 16 intervals were done with the same significance level , then 

the coverage probability of all 16 intervals as a group will be much lower than 

1-.  For example, if all intervals are constructed to have 95% coverage 

probability, then the probability that all 16 intervals will actually cover the true 

 is much smaller than 95%.  This is called the multiple comparisons problem 

or the problem of simultaneous testing. 

2. When we are constructing 16 intervals, their coverage probabilities and half-

widths will all depend on the common sample size N.  So it is not clear how to 

choose a single value for N that will be small, but will still give good properties 

for all of the intervals. 

 

Because of these two problems, the determination of sample size is not completely 

straightforward.  A number of methods have been proposed to solve this problem; 

two of them, representing different approaches, will be discussed in the next section.  

To help understand these methods, two concepts must be reviewed. 

 

The concept of groupwise significance level.  The significance level for an individual 

confidence interval has been represented by i.  The groupwise significance level will 

be denoted .  For a set of k confidence intervals, the interpretations of i and  are  

 

i = P(interval i fails to contain its true proportion i) 

 = P(at least one of the k intervals fails to contain its true proportion). 
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When doing many tests (k = 16 in our case), it is important to control the groupwise 

level .  For example, the intervals may be designed so that, on hypothetical 

repetitions of the experiment, there is only a 5% chance that even one of the 

intervals misses its true proportion.  To achieve this, it will be necessary to control 

each i to a level considerably below 5%. 

 

The Bonferroni correction.  The Bonferroni inequality is used to relate the significance 

level of the individual tests to the groupwise significance level.  The essential result is 

that, for k tests: 

 

 
1

k

i

i

 


  (3) 

 

That is, the sum of the significance levels of the individual intervals provides an 

upper bound on the groupwise significance level.  For example, if five intervals are 

constructed, each at level i = 0.01, then the groupwise significance level  will 

definitely be smaller than 0.05.  Based on inequality (3),  it is customary to set the 

individual significance level for each of k tests to /k.   

 

 

Two Approaches to Calculating Sample Size 
 

Below, two methods from the literature are used to explore the question of sample 

size for the upcoming experiment.  Both methods are reasonably easy to implement, 

but nontrivial to understand.  As such, the required formulas and description are 

presented, without further discussion of how or why the methods work.  It is hoped 

that the concepts explained above should render the methods understandable. 

 

Option 1:  Tortora Method 
 

This method is from Tortora (1978), and is also discussed in Bromaghin (1993).  It is 

useful in the following situations: 

 When it is desired to control the i for each interval, as well as the groupwise 

significance level . 

 When it is possible to specify good guesses for the vector of population 

proportions, . 

 When it is advantageous to use the standard formula given in (2) to form the 

confidence intervals. 

 

Inputs: 

 A desired groupwise significance level, . 

 A set of required confidence level half-widths, di (i = 1, 2, …, 16). 

- Default may be to assign the same precision d to all di. 

 A set of individual significance levels, i. 

- Default may be to assign equal levels i = /16. 

 A set of estimates for the true proportions i. 
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- Note: the calculated sample size depends on the choice of , so it is important to 

have a good guess of the proportions.  If no good guess is available, several options 
can be tested, and the largest sample size can be taken as a worst case.   

 

Calculation of sample size: 

 

The principle of this method is simple.  The sample size required is calculated based 

on each proportion individually, and then the largest estimate is taken as the final 

result. 

 

Let ni be the sample size estimate determined from the information for the ith 

proportion. 

 

1.  Calculate each ni, i = 1, 2, …, 16 as follows: 

 

 
 

  
2

1

2

1
ceil 1 2

i i

i i

i

n
d

 


 
   

 
 (4) 

 where ceil() is the ceiling (round up) function. 

2. Set the final sample size to N = max(ni). 

 

Note that equation (4) is simply equation (2) solved for N.   

 

An example calculation: 

 

First, let the desired groupwise error rate be .  One problem with using equation (4) 

is that separate values of i, di, and i must each be specified for all 16 proportions.  

For present purposes, the problem will be simplified by forcing certain relationships 

among the i’s and di’s. 

 

Specification of true proportions, i:   

 Assume the four correct diagnoses (AA, BB, CC, DD) have the same probability, 

call it ii.  Correct diagnoses are expected to dominate, so that 4ii should be 

large (say, 0.8-0.9). 

 Assume the remaining 12 incorrect diagnoses also have equal probability, ij.  

Once ii is specified, ij is determined, since 4ii + 12ij = 1. 

 

Specification of desired precisions, di: 

 Set the half-width of the intervals for AA, BB, CC, DD to a common value dii, and 

then set the other 12 half-widths to 2dii.  This implies that the proportions should 

be measured with twice the precision for the important cases AA, BB, CC, DD.     

 

Specification of individual significance levels: 

 Assume all intervals should be calculated with the same significance level * = 

/16. 

 

Making the above assumptions means that the full sets of i, di, and i values needed 

for equation (4) can be specified through three values:  ii, and dii. 

 

Example case:   = 0.05, ii = 0.2, dii = 0.05 
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 The value of ii = 0.2 implies that the total probability of successful classification 

is AA + BB + CC + DD = 0.8, and then that the 12 misclassification probabilities 

are all ij = 0.0167.  The intervals for the correct classifications will look like pii  

0.05, and for the misclassifications, pij  0.10.  Each of the intervals has 

significance level * = 0.003125. 

 

These parameter choices and the calculated ni from equation (4) are summarized 

below. 

 

Table 2.  Example calculation from the Tortora method. 

 

i 
Diag-
noses 

Inputs Output 

i di i ni 

1 AA 0.2 0.05 0.003125 559 

2 BB 0.2 0.05 0.003125 559 

3 CC 0.2 0.05 0.003125 559 

4 DD 0.2 0.05 0.003125 559 

5 AB 0.0167 0.10 0.003125 15 

6 AC 0.0167 0.10 0.003125 15 

7 AD 0.0167 0.10 0.003125 15 

8 BA 0.0167 0.10 0.003125 15 

9 BC 0.0167 0.10 0.003125 15 

10 BD 0.0167 0.10 0.003125 15 

11 CA 0.0167 0.10 0.003125 15 

12 CB 0.0167 0.10 0.003125 15 

13 CD 0.0167 0.10 0.003125 15 

14 DA 0.0167 0.10 0.003125 15 

15 DB 0.0167 0.10 0.003125 15 

16 DC 0.0167 0.10 0.003125 15 

 

The largest ni calculated was 559, so the result of this calculation is to recommend a 

sample size of N = 559 for the experiment.  

 

The large sample size required in this example is due to the relatively narrow 

confidence intervals required for AA, BB, CC, and DD.  Experience has shown that 

the interval half-widths di dominate the sample size calculation.  If a very narrow 

confidence interval is demanded, the required sample size will grow quite rapidly. 

 

Figure 1, below, shows the results of the Tortora method calculated exactly as 

above, but for different combinations of  and dii.  This figure can be used to study 

the precision-sample size tradeoffs in more detail.  Note again that these results 

depend on the particular set of i’s chosen, so that additional calculations using (4) 

are required for other scenarios. 
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Figure 1.  Results of the Tortora method.  Sample size vs. interval half-width for the 

conditions described in the text. 

 

 

Option 2:  Thompson Method 
 

The Tortora method just described is particularly useful if it is important to specify 

the minimum coverage of each individual interval, and specify a certain groupwise 

coverage rate.  The Thompson method (Thompson, 1987; Bromaghin, 1993), to be 

described next, has three characteristics that differentiate it from the previous 

method: 

1. It is based on intervals that all have the same width, and are of the form pi  d.  

So only a single half-width d must be chosen, and subsequent reporting of the 

proportions only need mention that “all proportions are estimated plus or minus 

d.” 

2. Because the intervals are all equally wide, the significance level of each interval 

is not controlled to pre-specified values.  Only the groupwise significance level 

is controlled.  So only a single overall level  needs to be specified. 

3. It does not require specification of i’s.  The method calculates a sample size 

that will be satisfactory even for the least favourable combination of 

probabilities.   

 

These characteristics make the calculation of sample size somewhat less cluttered 

than the Tortora method. 

 

Inputs: 

 The desired groupwise significance level, . 
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 The desired interval half-width, d. 

 

Calculation of sample size: 

 

The sample size is determined from equation (5): 

 

   
2

1

2 2

1
ceil max 1

2m

m
N

m m d
  

    
  

, (5) 

 

Where m is an integer.  The expression in the square brackets is to be maximized 

over all integers m, but in practice the maximum will occur at a small value of m, 

after which the result will continuously decrease.  So it is only necessary to start at 

m=1 and try increasing m until the result begins to decrease. 

 

Thompson (1987) also provides a small table that makes evaluation of N particularly 

easy for the given values of , for any d.  A portion of the table is reproduced below. 

 

 

Table 3.  A quick method of calculation for the Thompson method at particular  

values.  Divide the appropriate entry in the d2N column by the desired value of d to 

find N. 

 

 d2N 

0.20 0.74739 

0.10 1.00635 

0.05 1.27359 

0.025 1.55963 

 

 

An example calculation: 

 

Equation (5) can be used to produce a figure equivalent to Figure 1, but using the 

Thompson method.  The results are shown in Figure 2.  Note that unlike the Tortora 

approach, Figure 2 applies to any particular true set of probabilities that may exist. 

 

Figure 2 agrees with Figure 1 in the general shape and placement of the curves.  The 

two methods of calculating sample size largely corroborate one another. 
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Figure 2.  Results of the Thompson method.  Sample size vs. interval half-width for 

different groupwise significance levels. 

 

 

 

 

Summary and Conclusions 
 

Despite the apparent complexity of the preceding analyses, the conclusions of this 

study are relatively straightforward. 

 

What sample size is recommended? 

 

This question cannot be answered conclusively without more understanding of what 

constitutes a “big” and “small” sample size in the practical context of the experiment.  

The two methods of estimating sample size agree reasonably well, so that either 

method (and either Figure 1 or Figure 2) can be used to evaluate the trade-offs 

between sample size and precision.  The following general comments can be made: 

 A half-width of d = 0.05 is probably a good goal for any proportion that needs to 

be estimated with high precision.   

 If the goal is d = 0.05 with a good groupwise error rate, then a sample size of 

approximately 500 is needed. 

 If a sample size in the hundreds is considered unacceptable, the only viable 

solution is to considerably increase the acceptable groupwise significance level 

(or to ignore the multiple comparisons problem completely).  If this approach is 

taken, the investigators should be aware that one or more of the confidence 

intervals constructed are likely to miss their true values. 
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After choosing N and getting the data, how should data analysis be done? 

 

The most important message is to report a confidence interval for any proportions 

that are calculated and reported.  Equation (2) can be used as a general equation for 

constructing an interval for a proportion.  Reporting an interval estimate rather than 

just a point estimate is a vast improvement. 

 

Beyond just using intervals, some consideration of the multiple comparisons issue 

would be another improvement.  This can be done in one of two ways: 

a) By using intervals calculated with equation (2), but using a Bonferroni-

corrected significance level (/k). 

b) By using a fixed-width interval as discussed in the Thompson method, and 

reporting only the appropriate groupwise significance level.  Table 3, for 

example, could be used to determine the matching , d, and N values. 

 

 

Appendix:  Ignoring the Multiple Comparisons Problem for the 

Purposes of Choosing Sample Size 
 

Another way to think of the study is to assume that each patient has been pre-

screened for a single pathology.  The tests for each patient then become a single 

yes/no decision, so that only one proportion (the proportion of “yes” results) needs 

to be estimated. 

 

In this situation one could consider the set of patients in each pathology group as 

essentially a separate study, and just construct each confidence interval at the usual 

 = 0.05 level—without correction for multiple comparisons4.  If intervals are 

constructed using equation (2), then equation (4) can be used to determine the 

approximate sample size needed in each pathology group.   

 

The results of such a sample size calculation are shown in Figure 3, for different 

combinations of  and d, with a fixed  value of 0.05.  It is clear from the figure that 

the required sample size has a strong dependence on both the true proportion and 

the desired half-width.  The dashed vertical line in the figure is drawn at  = 0.90, a 

plausible value from historical data.  At this value of , a sample size of 35 is needed 

to obtain a confidence interval with a half-width of d = 0.1. 

 

                                           
4 Note that viewing the problem in this way does not eliminate the multiple comparisons problem; 
it just eliminates it from discussion.  If 95% confidence intervals are made for the “yes” proportion 
for four different pathologies, the chance that all intervals cover their true values could be as low 
as 80%.  This is not necessarily a problem, and should not influence the interpretation of each 
individual interval; but it is worth being aware of this effect whenever considering several statistical 
tests or intervals at once. 



10-Jun-2007 Sample Size for Multinomial Proportions 12/12 

 

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

  d = 0.05

    d = 0.10

  d = 0.15

True Proportion, 

S
a
m

p
le

 S
iz

e
, 

N

 139

 35

 16

 
Figure 3.  Sample sizes required for estimation of a single proportion, as a function 

of  , the true proportion, and d, the half-width of a 95% confidence interval.  A 

vertical line, with calculated N values shown, is drawn at the plausible value  = 0.9.  
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