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ABSTRACT

A method is proposed for shape-constrained density estimation under a variety of constraints,

including but not limited to unimodality, monotonicity, symmetry, and constraints on the

number of inflection points of the density or its derivative. The method involves computing

an adjustment curve that is used to bring a pre-existing pilot estimate into conformance

with the specified shape restrictions. The pilot estimate may be obtained using any pre-

ferred estimator, and the optimal adjustment can be computed using fast, readily-available

quadratic programming routines. This makes the proposed procedure generic and easy to

implement.

1 Introduction

Probability density estimation is a fundamental task in data analysis. It may be done on its

own to aid understanding of a data set, or it can be used as a component of more sophisticated

statistical procedures. In either situation one is faced with a choice between parametric and

1

This is an Accepted Manuscript of an article published by Taylor & Francis in
Communications in Statistics - Simulation and Computation on 3-Feb-2017,
available online: http://www.tandfonline.com/10.1080/03610918.2017.1288247.



nonparametric approaches to density estimation—each approach with its advantages and

disadvantages.

Shape-constrained nonparametric density estimation occupies a middle ground between

the parametric and nonparametric options. When some shape characteristics of the density

to be estimated may be safely assumed, a shape-restricted nonparametric estimate offers

the potential for better statistical performance than purely nonparametric methods along

with better data-adaptivity than parametric alternatives. As an added practical benefit,

the constrained estimate will exhibit the desired shape characteristics for every sample, not

just on average or asymptotically. These advantages are particularly important for small

to moderate sample sizes, where sampling variation is more likely to produce undesirable

qualitative features in unconstrained nonparametric estimates.

The motivation for using shape constraints can be illustrated by considering different

situations that would make an analyst inclined to use them. The analyst might be con-

vinced that a quantity of interest is an aggregate of many small influences, for example,

and on this basis be considering a normal model for the data. If there is concern about the

presence of skew, however, a safer choice would be to use a nonparametric estimator with

a constraint that ensures unimodality and limits the number of inflections in the estimate

(such as the proposed bell shape constraint introduced later in this article). Similarly, a

user with nonnegative data such as failure times might believe that the unknown density

producing the observations is 2-monotone (i.e., convex and decreasing; see Balabdaoui and

Wellner (2007)), but might be reluctant to commit to the memoryless property inherent in

an exponential model. In this case a nonparametric estimate with the 2-monotonicity con-

straint directly enforced (such as the one shown later, in Figure 1) would be more suitable.

Finally, an investigator may have in hand a nonparametric density estimate to be presented

to non-statisticians, but one that includes potentially distracting spurious modes in the tails.

A constraint requiring the estimate to have monotonic tails would rectify the problem with

minimal impact (and possible improvement) on the statistical validity of the estimate.

At present the barriers to wide adoption of shape-constrained density estimation are

threefold. There does not exist an estimation framework that i) can handle a variety of differ-

ent constraints, ii) acts as an extension of familiar density estimators, and iii) is constructed
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in a manner that yields easy optimization problems. This article describes a constraint-

handling approach intended to eliminate these barriers. The new method has the following

distinguishing features:

1. It operates as an adjustment to an existing density estimate (called the pilot estimate),

so it can be used as an adjunct to various familiar estimators.

2. It can handle a number of important constraints, including but not limited to mono-

tonicity, convexity, unimodality, symmetry, and a proposed bell shape constraint based

on the inflection points of the density. It can also incorporate roughness penalties

based on the integral of the square of the second derivative of the density.

3. All of the aforementioned constraints and penalties can be enforced using fast and

readily-available quadratic programming (QP) routines.

4. While the method is best suited to univariate problems, its mathematical structure can

be extended to higher dimensions. A bivariate case is demonstrated in the Examples

section to follow.

The core of the method is a general construction of an adjustment to a pilot estimate,

that allows various problem instances to be expressed as quadratic programs and solved

using the same optimization framework.

The remainder of this section reviews existing methods for shape constrained nonpara-

metric density estimation, and provides an overview of the proposed methodology. The new

method is then described in detail, including a variety of alternatives in the construction of

the adjustment and the set up of the optimization. The third section discusses how these im-

plementation alternatives impact performance and ease-of-use. It is shown how user-facing

functions can be created to make shape constrained estimation just as easy as standard non-

parametric density estimation. Following that, the method’s performance is demonstrated

using both examples and simulations.

For concreteness, we will describe the method for the case where the pilot estimator is

a kernel density estimator (KDE; see, e.g., Wand and Jones (1995); Sheather (2004)). The

supplementary material accompanying the article includes a MATLAB (The Mathworks,
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Inc. 2007) implementation of the method. It includes both a low-level function allowing

detailed control of the method with arbitrary pilot estimators, as well as all-in-one functions

for obtaining various shape-restricted kernel density estimates in one function call.

1.1 Shape-constrained density estimation

One approach to the problem of finding shape-restricted estimates is to find the nonpara-

metric maximum likelihood estimator (NPMLE) of the density under the shape constraint

of interest. This was done by Grenander Grenander (1956) for the constraint of monotonic-

ity. Later research attempted to extend the Grenander estimator to unimodal densities in

general. The common premise was to combine a nondecreasing Grenander estimate to the

left of the mode with a nonincreasing one to the right. When the location of the mode is

known, this estimator is the NPMLE; otherwise the NPMLE does not exist. A variety of

solutions to the problem of mode location in this setting have been proposed (Wegman 1972;

Bickel and Fan 1996; Birgé 1997; Reboul 2005). Like the Grenander estimator itself, all of

these methods produce an estimate that is a step function.

Important recent work (Dümbgen and Rufibach 2009; Cule et al. 2010) has developed the

NPMLE for a different constraint, log-concavity. Both the properties of this estimator and

an algorithm for computing it have been developed in arbitrary dimension. In the univariate

case, this estimator can lead to estimates with a cuspate appearance (the logarithm of

the estimate is piecewise linear), making it a less attractive choice when a high degree of

smoothness is desired. It does not depend on any bandwidth or smoothing parameters,

however, which is particularly advantageous in higher dimensions.

Estimation approaches not based on maximum likelihood have also been proposed to

construct smooth density estimates under the unimodality constraint or other simple con-

straints. Fougères (1997) used a monotone rearrangement to transform a multimodal density

estimate into a unimodal one, though under the restrictive assumption that the final mode

location is known. Cheng et al. (1999) start with a unimodal template density and then

iteratively apply monotone transformations (possibly with intermediate smoothing steps)

to construct a more suitable unimodal estimate. The method of rearrangements has also

been used by Birke (2009) to find monotone, convex, or log-concave estimates (see references
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therein for additional alternatives with these constraints).

Another branch of recent research focuses on methods that can handle shape constraints

using standard nonparametric estimators that are more familiar to users. Data sharpen-

ing (shifting the data points) is one such approach that has been used for accommodating

constraints in both density estimation and regression (Braun and Hall 2001; Hall and Kang

2005). Finding the optimally-sharpened data values is challenging, and alternative optimiza-

tion algorithms have been proposed (Wolters 2012a,c) to improve the performance of data

sharpening and expand the number of constraints that can be handled with it. Du et al.

(2013), expanding on the work of Hall and Huang (2001), used weights on the data points

to enforce a broad class of derivative constraints on kernel regression estimates; this strategy

can also be applied to density estimation. Because techniques like shifting or re-weighting

data points are so general, they can work with any estimator, and can in principle handle

arbitrary constraints or high-dimensional problems. This approach to constraint handling is

investigated thoroughly by Wolters (2012b) . The contribution of the present work is another

means of shape adjustment which, like data sharpening or re-weighting, can be applied to

any density estimator.

Shape constraints are common in regression as well as density estimation. While the

method described below is potentially extensible to regression problems, this extension is

not pursued here. The reader is referred to the literature (Meyer 2008; Henderson and

Parmeter 2009, 2015) for recent work summarizing the developments in shape-constrained

regression.

1.2 The proposed approach

Let the pilot density estimate, which does not necessarily satisfy the desired constraints,

be f̂ ◦. A simple option for modifying the shape of f̂ ◦ is to add to it a function, Ψ(x),

that can annihilate any of its unwanted features or contribute any desired features that are

not present. It is proposed to let Ψ(x) be a linear combination of k density functions ψi,
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i = 1, . . . , k. Then the shape-adjusted estimator, f̂a, is

f̂a(x) = f̂ ◦(x) + Ψ(x)

= f̂ ◦(x) + a1ψ1(x) + a2ψ2(x) + ∙ ∙ ∙ + akψk(x)

= f̂ ◦(x) + aT ψ(x),

(1)

where a = [a1 ∙ ∙ ∙ ak]
T are the coefficients of the combination, and ψ(x) = [ψ1(x) ∙ ∙ ∙ψk(x)]T .

The coefficients can be chosen to minimize the amount of adjustment made to f̂ ◦, subject

to the required shape constraints on f̂a. The functions Ψ(x) and {ψi(x)} will be referred to

as the adjustment curve and the adjustment densities, respectively.

The number of adjustment densities (k) and the specific densities chosen for each ψi

determine which Ψ(x) curves are possible; consequently, these choices must be made appro-

priately for the pilot estimator and shape constraints used in a particular problem. Figure

1 provides an illustration of how adjustment densities are set up appropriately in two dif-

ferent scenarios. The first example in the figure is based on a draw of size n = 20 from

a standard normal distribution. A kernel density estimate with Gaussian kernel is used as

the pilot density. The pilot estimate has three modes. In this case the ψi are chosen to be

normal densities positioned with uniform spacing over the range of the pilot estimate. This

arrangement of adjustment densities is used to construct an adjustment curve that renders

the final estimate unimodal.

The second example in the figure uses as its pilot an edge frequency polygon (Jones et al.

1998). The data are a random sample of size n = 50 from an exponential distribution.

Because the pilot estimate in this case is piecewise linear, it is more appropriate to use

triangular adjustment densities, arranged so that Ψ(x) is also piecewise linear with slope

changes at the same points as the pilot estimate. In this second example two constraints are

enforced: i) the estimate must be zero for negative abscissa values, and ii) the density must

be 2-monotone on the positive half-line. The optimization methodology used to obtain this

second estimate is identical to that used for the first example.

The Gaussian KDE case is prototypical, so this estimator is considered for the remainder

of the article. The next section provides more detail on how the problem may be set up and

solved for this estimator with a variety of constraints.
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Figure 1: Illustration of the adjustment curve method. In the left panel, a kernel density
estimate is rendered unimodal using normal adjustment densities. In the right panel, an
edge frequency polygon is rendered 2-monotone on the positive half-line, and zero elsewhere,
using triangular adjustment densities. The adjustment densities and the adjustment curve
are shown beneath each plot, with vertical scaling chosen to enhance visualization.

1.3 Remark on large-sample properties

Consider the case where the sample size is n and the pilot estimator f̂n(x) is a KDE with

kernel K(∙) and bandwidth hn. The kernel is assumed to be a bounded symmetric contin-

uous probability density function having bounded variation (an assumption stronger than

necessary, but satisfied by the kernels we are considering). Suppose the density being esti-

mated, f(x), satisfies the chosen constraints and has a uniformly continuous rth derivative

on (−∞,∞). Suppose also that hn → 0 and nh2r+1
n / log(1/hn) → ∞ as n → ∞.

Silverman (1978) showed that under these conditions a KDE with an appropriately-chosen

bandwidth exhibits strong uniform consistency as an estimator of not only the density itself,

but also of its derivatives. That is,

lim
n→∞

sup
x

|f̂ (r)
n (x) − f (r)(x)| = 0

with probability 1. Silverman’s theorem implies that there exists N such that for any ε > 0,

sup
x

|f̂ (r)
n (x) − f (r)(x)| < ε, ∀n > N

with probability 1.

Most of the shape constraints to be considered are expressed as constraints on the deriva-

tives of f̂n(x) over intervals. The above result indicates that for n sufficiently large, the
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magnitude of any violations of such constraints will be bounded by the arbitrarily small

constant ε.

Consider the unimodality case, with mode m, as an example. In this case f ′(x) ≥ 0 for

all x < m and f ′(x) ≤ 0 for all x > m. Let ε > 0 be given. Then there exist N1 and N2 such

that (with probability 1)

f̂ ′
n(x) ≥ −ε, ∀x < m

for all n > N1 and

f̂ ′
n(x) ≤ ε, ∀x > m

for all n > N2. Therefore, f̂n(x) will be unimodal up to the tolerance ε for all n >

max(N1, N2), with probability 1.

Informally, we expect the pilot estimate to need less and less adjustment as the sample

size grows—assuming the chosen constraints are in fact features of the density being esti-

mated, and the pilot estimator has sufficiently good asymptotic properties. This ability to

“borrow” the asymptotics of the pilot estimator is an advantage of the proposed approach:

asymptotically, the adjustment can do no harm, but in finite samples it can bring improve-

ments. The benefits of including shape restrictions in small samples are illustrated in the

simulation at the end of this paper, and have also been observed elsewhere (Braun and Hall

2001).

2 Details of the new method

The new method will now be described in greater depth. The first part of this section

describes how the optimal estimate in the general formulation (1) can be defined as the

solution to a quadratic program. The second part describes a number of shape restrictions

that can be enforced through linear inequality constraints in a, as required by the QP

framework. The third part addresses the important question of how to lay out the adjustment

densities to ensure the existence of feasible and useful solutions.

The information in this section is oriented toward the reader who wishes to understand

the method in detail, for example to adapt the technique to situations beyond those described

in this article. When working with specific problem instances—specific combinations of pilot
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estimator and constraint—many of the aspects discussed here can be handled internally in

user-facing computer code. This point is discussed further in a later section.

2.1 Quadratic objective, linear constraints

Let the optimal vector of adjustment coefficients be a∗, and take it to be the minimizer of

a quadratic form,

a∗ = argmin
a

aTHa + vT a, (2)

with the values of H and v to be specified. The minimization is subject to three groups of

constraints:

k∑

i=1

ai = 0 (3)

f̂ ◦(gl) + aT ψ(gl) ≥ 0, l = 1 . . . G (4)

Aa ≤ b. (5)

Expressions (2) through (5) define a quadratic programming problem, since the objective

function is a quadratic form in a and the constraints are linear in a. QP problems may

be routinely solved in most statistical computing environments, with rapid computation of

solutions even when H and A are of large dimensions. Further, when the matrix H is

positive definite (as it is using either of the objective functions discussed subsequently), the

QP solver returns the globally optimal solution. For more on quadratic programming, see,

e.g., Antoniou and Lu (2007) or Nocedal and Wright (1999).

Consider the constraints first. Eq (3) defines a sum constraint on the ai to ensure that

Ψ(x) integrates to zero. Constraint (4) is a system of G inequalities that enforce non-

negativity on f̂a pointwise at a vector of abscissa values g = [g1 ∙ ∙ ∙ gG]T . For practical

purposes this will achieve uniform nonnegativity if g is taken to be an evenly-spaced grid

of values extending beyond the minimum and maximum data values, with the number of

gridpoints (G) sufficiently large. A default rule for setting G is given below. Together,

constraints (3) and (4) ensure that the adjusted estimate remains a bona fide probability

density.
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The final constraint (5) is a general system of inequalities used to implement any operative

shape constraints. Shape constraints are also enforced pointwise over a grid. This allows each

constraint to be expressed as a linear system of finite dimension. For convenience, we use

the same vector g, defined above, as the constraint-checking grid for the shape constraints.

We will shortly see a number of constraints that can be expressed as a linear function of a;

examples of how specific constraints are expressed in the form Aa ≤ b are deferred to the

article’s supplemental material.

Turning to the objective function, the quadratic form in (2) should quantify the amount

of adjustment made to the pilot estimate. One possible measure of the amount of adjustment

is the integrated squared error between f̂a and f̂ ◦:

ISE(a) =

∫ ∞

−∞
(f̂a(x) − f̂ ◦(x))2dx =

∫ ∞

−∞
aT ψ(x)ψ(x)T a dx. (6)

This integral can be approximated by evaluating ψ(x) at the points in g and using the

trapezoidal rule. With this approximation, ISE(a) takes the form of the objective function

in Eq (2), with v = 0 and H =
∑G

l=1 clψ(gl)ψ(gl)
T (where c1 = cG = 1 and cl = 2 for

l /∈ {1, G}; see the article’s supplementary material for more details).

An alternative is to use the sum of the squared coefficients (L2 distance):

L2(a) = aT a, (7)

which is reasonable because the total adjustment is zero when a = 0. The L2 objective

corresponds to the general form (2) with v = 0 and H = I. It will be shown below that

when the pilot estimator is a KDE, our preferred construction of Ψ(x) is indifferent to the

choice of ISE or L2 objective. For simplicity, then, the L2 objective is used henceforth.

An extension of objective (2) will allow a penalty on the roughness of the final estimate

to be included. If, following other types of roughness-penalized estimation (Ramsay and

Silverman 2005), we use the integrated square of the second derivative of f̂a as a measure of

roughness, the objective may be written aT (H + λS)a + vT a. In this case H measures the

amount of adjustment made, as before. The added term λS and the linear term v (which is

nonzero in this case) are used to implement the penalty. The coefficient λ is an adjustable

parameter controlling the size of the penalty, and therefore the smoothness of the estimate.
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The roughness penalty may be used on its own, or in addition to shape constraints. An

example using this penalty is presented later, in Figure 4, and computational details are

given in supplement S2, but otherwise the focus of this work is on shape constraints without

this type of smoothness control.

2.2 Constraints fitting the QP framework

The pth derivative of the adjusted estimate (1) is

f̂a
(p)(x) = f̂ ◦(p)(x) + aT ψ(p)(x),

which is linear in a. Any shape constraints involving only linear restrictions on f̂a or its

derivatives will therefore be linear in a as well, and expressible in a form suitable for QP.

The following constraints may be implemented in this manner.

Unimodality with mode at m. For an estimate satisfying this constraint, f̂ ′
a(x) ≥ 0 when

x ≤ m and f̂ ′
a(x) ≤ 0 when x ≥ m.

This constraint can be generalized to the case of M > 1 modes. Let m1, . . . ,mM be

the mode locations, and u1, . . . , uM−1 be the locations of the minima between adjacent

modes (consequently m1 < u1 < m2 < ∙ ∙ ∙ < uM−1 < mM ). In this case f̂ ′
a is

constrained to be positive to the left of m1, negative between m1 and u1, positive

between u1 and m2, and so on alternating over the support of the estimate.

Monotonicity on the interval I = (x1, x2). That is, f̂ ′
a(x) ≥ 0, x ∈ I (monotonically

increasing) or f̂ ′
a(x) ≤ 0, x ∈ I (monotonically decreasing). Convexity over an interval

can similarly be achieved by restricting the sign of the second derivative of f̂a.

Nonnegative support: f̂a(x) ≤ ε, ∀x ≤ 0, where ε is a small positive number. This

constraint can be used to prevent a Gaussian KDE from having appreciable probability

mass on the negative half-line.

Symmetry with point of symmetry s and tolerance ε. An estimate is considered symmetric

if |f̂a(s − d) − f̂a(s + d)| ≤ ε, ∀d > 0.
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The tolerance ε in this definition is required to make the constraint expressible as a

system of inequalities, rather than strict equalities. Because there are a finite number of

adjustment densities, it may not be possible to render f̂a(x) perfectly symmetric for all

possible choices of the reflection point s. Small values of ε (0.001 times the maximum

height of f̂ ◦, for example) are usually sufficient to make the problem feasible.

Bell shape (type 1): f̂a has exactly two inflection points, at v1 and v2. That is,

f̂ ′′
a(x) ≥ 0, x < v1 or v2 ≤ x

f̂ ′′
a(x) ≤ 0, v1 ≤ x < v2.

Bell shape (type 3): f̂ ′
a has exactly three inflection points, at v1, v2, and v3, i.e.,

f̂ ′′′
a (x) ≥ 0, x < v1 or v2 ≤ x < v3

f̂ ′′′
a (x) ≤ 0, v1 ≤ x < v2 or v3 ≤ x.

A number of comments can help to clarify this list. As previously mentioned, computer

implementation of each of these constraints involves pointwise constraint checking over a set

of grid points. The supplement to this article describes in more detail how this is done. Also,

note that it is not difficult to apply multiple constraints from the above list simultaneously,

for example to achieve an estimate that is both symmetric and unimodal.

The bell shape constraints were introduced by Wolters (2012b) as a means of obtaining

unimodal estimates with a degree of smoothness and qualitative resemblance to typical

parametric forms greater than that possible with a simple unimodality constraint. The

type 1 restriction ensures that the estimate has minimal waves or kinks by preventing extra

inflection points from appearing in the density. The type 3 restriction ensures an even

higher degree of smoothness by restricting the inflections of the density’s derivative. An

intermediate type 2 option was also proposed, but it is of less practical interest than these

two choices.

Most of the constraints listed above only satisfy the QP structure if the locations of

certain points such as the mode, point of symmetry, or inflection points are known. We refer

to these as important points. Since the locations of these points are not known in practice,
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it is necessary to embed the QP solver inside an outer optimization procedure to determine

their optimal values. Taking unimodality as an example, the globally optimal adjustment

curve can by found by QP for any given mode location m; when m is not known beforehand,

a univariate search must be conducted to choose its value, with the QP solver called at each

candidate mode location.

The need to search for the best combination of the important points adds complexity

to the problem and destroys any guarantee of global optimality in practical application.

Nevertheless, good constrained estimates can be found as long as the number of important

points is not too large. The following approach is recommended for locating the important

points. Let the number of important points be r, and label the points from left to right in

ordered sequence v1 ≤ v2 ≤ . . . ≤ vr. Let v0 and vr+1 be lower and upper bounds for the

search, respectively. When r = 1, the best estimate may be found by performing a one-

dimensional minimization of the QP objective as a function of v1, over the interval (v0, v2).

For r > 1, a good solution can be found by iteratively optimizing each vi over (vi−1, vi+1), and

stopping when no improvement can be made. Any one-dimensional, gradient-free minimizer

can be used for the minimization step; each evaluation of the objective function during the

minimization requires the quadratic program to be solved for a particular value of (v1, . . . , vr).

This iterative procedure has advantages over attempting to optimize (v1, . . . , vr) simul-

taneously. It naturally handles the order constraints on the vi values, and permits a simple,

numerically stable optimizer to be used for each step. In our implementation, we carry out

the univariate optimizations using golden section search, which is much more efficient than

a brute-force grid search over the interval. For the small r values in our constraints (r ≤ 3),

the overall procedure terminates in reasonable time (on the order of seconds).

2.3 Choosing the adjustment densities

The quality of the solution obtained by the QP solver (and the existence of a solution in the

first place) depends on the particular set of adjustment densities {ψi}i=1,...,k used to construct

the adjustment curve. To perform its function well, the adjustment curve should be smooth,

but still have a high degree of shape flexibility over the support of the density—enough that

f̂a can take shapes ranging from sharp peaks to completely flat sections.
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The primary means of achieving shape flexibility in the adjustment curve is to choose k

sufficiently large and to let each individual ψi have its probability mass concentrated over

a small region of the support. To avoid introducing unwanted discontinuities in f̂a or its

derivatives, the adjustment densities should have the same degree of smoothness as the pilot

estimator. If these requirements are met, the specific functional form of the adjustment

densities is of little importance.

When the pilot estimator is a Gaussian KDE, a convenient way of defining the adjustment

curve is to let the ith adjustment density be a N(μi, σ
2
i ) density,

ψi(x) =
1

σi

φ

(
x − μi

σi

)

, (8)

where φ(∙) is the standard normal density function. Good performance of Ψ(x) can then be

ensured by appropriate choices of (μi, σi), i = 1, . . . , k. Two options appear most natural.

Option 1: match the pilot KDE’s kernel functions

In this option, k = n and the ith adjustment density has parameters μi = xi and σi = h,

where h is the bandwidth parameter of the KDE. In effect, each adjustment density is

assigned to one data point and serves to increase or decrease the contribution of the kernel

at that point. With the {ψi} matched to the Gaussian KDE in this way, f̂a(x) is

f̂a(x) = f̂ ◦(x) +
n∑

i=1

aiψi(x)

=
1

nh

n∑

i=1

φ

(
x − xi

h

)

+
n∑

i=1

ai

h
φ

(
x − xi

h

)

=
1

h

n∑

i=1

(
1

n
+ ai

)

φ

(
x − xi

h

)

, (9)

which is equivalent to a variable-weight kernel estimator, with the ith point receiving weight

wi = 1
n

+ ai. This shows that using variable weights to enforce shape constraints on a KDE

is a special case of the adjustment curve method, and that optimal weights can also be found

using quadratic programming.

Figure 2 shows what the estimate looks like using this arrangement of adjustment den-

sities. The data in the figure are a random sample of size 50 from a lognormal distribution.
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Figure 2: A unimodal KDE with adjustment densities at the data points. The pilot estimate
and two unimodal estimates are shown. Underneath are found the set of adjustment densities
(scaled down to fit on the plot), with the adjustment curves superimposed.

The pilot estimate (with h = 0.75hSJ , where hSJ is the plug-in bandwidth of Sheather and

Jones (1991)), is trimodal with an outlying point. Optimal unimodal estimates are shown

for both the ISE and L2 objective functions.

The figure illustrates the advantages of constructing Ψ(x) in this way. The weight in-

terpretation of a is an advantage in itself. Also, the adjustment curve is able to perfectly

annihilate any unwanted features of the pilot density (as with the outlying mode in this

example), because the adjustment densities are equal to the kernel functions. Simplicity is

another advantage, since k and {μi} are fixed by the data, and choosing the pilot bandwidth

determines {σi}.

Several important disadvantages of this construction are also apparent in the estimates.

First, in some circumstances it may be necessary to give points zero weight (ai = − 1
n
) in

order to find a feasible solution. This is the case for the outlying point in Figure 2. It is not

possible for the constrained estimator to extend its right tail all the way out to this outlier.

Second, this method inherits a general feature of variable-weight estimators, that a local

adjustment in one region of the curve may require compensatory adjustment in a distant

region. In the figure, this effect is more obvious when the aT a objective is used. The fact

that the two objective functions produce such different estimates is also discouraging, as both

options should promote selection of solutions that are close to the pilot density. Finally, the
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adjustment densities may become unnecessarily concentrated in the high-density regions of

the curve. This becomes increasingly inefficient as n grows, and could cause ill-conditioning

of the coefficient matrices used by the QP solver.

Option 2: location-shifted, overlapping densities on a grid.

The second natural choice is to let all the adjustment densities have the same standard

deviation σ, and locate them on an evenly-spaced grid. Let l and u be lower and upper

bounds for the grid, selected so that (l, u) extends beyond the data in either direction (setting

l = x(1) − 4h and u = x(n) + 4h would seem reasonable). Then the set of densities is fixed

by specifying k and σ. As a rule of thumb, it is proposed to use

k =

⌈
2(u − l)

h

⌉

and σ =
u − l

k − 1
≡ Δ, (10)

where d e represents the ceiling function and Δ is the grid spacing. With this rule, the

adjustment densities are centered at μi = l + (i − 1)Δ, i = 1, . . . , k.

The logic behind recommendation (10) is as follows. Take l and u as given. The set

of adjustment densities must be able to reproduce the pilot pdf to within some tolerance,

otherwise Ψ(x) would not be able to eliminate unwanted features of the density. So the grid

must be dense enough that every data point is close to a grid point μi. The bandwidth h can

be taken as a measure of closeness, so a grid spacing of approximately h
2

should be sufficient.

The grid spacing is Δ = u−l
k−1

, so ideally one would choose

u − l

k − 1
=

h

2
⇒ k =

2(u − l)

h
+ 1.

The value suggested in (10) results by noting that 2(u − l)/h � 1 and that k must be an

integer.

With the values of k and Δ thus determined, we set σ = Δ to ensure that the ψi(x)

overlap to an appropriate degree. A trade-off exists in the choice of σ. If it is made too

large, the adjustment densities will overlap too much, and the adjustment curve will be

too smooth—unable to make rapid local changes of shape. If σ is too small, on the other

hand, the adjustment curve (or its derivatives, which are used in the constraints) will be

insufficiently smooth, and the solver might not be able to find a solution. Experience has

shown that setting σ = Δ provides a good compromise between these two extremes.
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Figure 3 demonstrates the results of this construction of Ψ(x) on the lognormal-data

example of Figure 2. In this case the adjustments to the pilot density are confined to those

regions near the constraint violations, and the adjusted estimate does extend out to the

outlying point. Also, the two different objective functions return nearly indistinguishable

solutions. This is a consequence of defining the adjustment densities in this way, and the

agreement between ISE(a) and L2(a) improves as n or k grow (see the article’s supple-

mentary material for more on this point). Given these appealing characteristics, the grid

construction for Ψ(x) with rule of thumb (10) is used from this point forward.
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Figure 3: A unimodal KDE with adjustment densities on a grid. Compare with Figure 2.
The rule of thumb (10) chose k = 60 for these data.

When using this rule of thumb for setting up the adjustment densities, it is also important

to ensure that G, the number of constraint checking points, is sufficiently large. If G is too

small, then some adjustment densities might fall between points in g, and the corresponding

a values will have no influence on the constraints inside the QP solver. This can lead to

solutions with unintended constraint violations. A default setting of G = 2k is recommended

to avoid this problem. This default is used in all of the examples and simulations to follow.

3 User-facing estimation routines

The adjustment curve approach to constraint handling, in its general form, is conceptually

simple: the adjustment is a linear combination of density functions, and the constraints are
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evaluated pointwise over the support of the density, yielding a quadratic program. Most of

the complexity encountered in the preceding section arises in the process of matching this

general structure to a specific type of pilot density (the KDE) so that the resulting opti-

mization problem is feasible, numerically stable, and produces desirable solutions. It is not

uncommon to encounter such implementation issues when applying a general computational

scheme to a specific problem. More importantly, these implementation details primarily im-

pact optimization performance, rather than statistical performance. Once they have been

worked out for a particular type of pilot estimator, they can be fixed and built into computer

code so that the end user need not be aware of them.

As justification of these claims, we can review the design decisions covered in the previous

section, taking the perspective of a programmer whose goal is to implement the method to

add constraints to a KDE in a user-friendly way.

Constraint-checking grid. It is necessary for numerical stability that every ψi(x) be in-

volved in at least one constraint inequality. This is not hard to achieve for a given set of

adjustment densities. Beyond this, setting the number of check points sufficiently large

(say, 100 or more) will ensure that any constraint violations at intermediate points are

negligible. Adding more check points will increase the size of the matrices fed to the

QP solver, but will have minimal effect on the final estimate.

Objective function. The optimization is indifferent to the choice of ISE or L2 objective,

so this choice depends on user preference. As explained previously, the two options

have little difference when the ψi are arranged on a grid.

Constraint tolerances. The symmetry and nonnegative-support constraints each include

a tolerance ε required to ensure feasible solutions exist. Experience has shown that,

in both cases, a very wide range of ε values (many orders of magnitude) can ensure

numerical stability while having no discernable effect on the final estimate.

Placement of the adjustment densities. For the case of a KDE pilot estimator (and

not for other situations), the option exists to match the adjustment densities to the

pilot kernel functions (“option 1”). This may be viewed as a serendipitous result for
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the KDE case, since it allows us to obtain a shape-restricted weighted KDE using the

adjustment curve technology. This choice fixes all ψi and admits no further tuning of

the adjustment densities.

The alternative of letting the ψi be k location-shifted copies of a normal density (“op-

tion 2”) is more generally applicable and could be used with other smooth pilot esti-

mators. In this case, it is crucial for feasibility that the densities overlap sufficiently,

and that k is sufficiently large. Guidelines for satisfying these requirements were given,

but a wide range of grid arrangements will suffice, with minimal impact on the final

estimate.

From this summary we see that once we have settled on option 1 or option 2 for the

placement of the ψi, all of the other settings are easily made and have little impact on the

shape of the final estimate. In particular, the visually discernable effect of the algorithmic

options is dwarfed by the effect of setting the estimator’s true tuning parameter—the pilot

bandwidth, h.

The MATLAB code accompanying this article includes individual functions to run the

procedures described throughout. In addition, there are six functions that could be described

as user-facing—they handle all of the algorithmic options internally and compute constrained

density function values at specified points. These functions use a Gaussian KDE as the pilot

estimator and handle six scenarios: unimodality, type 1 bell shape, and type 3 bell shape,

each with or without the additional constraint of symmetry. These functions take only the

data and the pilot bandwidth as inputs, making them as easy to use as unconstrained estima-

tion functions. Internally, the functions set up the adjustment densities and the constraint

checking grid automatically, and solve the resulting QP problem repeatedly until the best

important points (mode location or inflection points) are found. The functions were used to

process the examples and simulations given in the following sections.

4 Examples

In this section, two data sets from the literature are used to illustrate some characteristics

of the adjustment curve method. The first data set is univariate, consisting of 57 wind
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Student Version of MATLABFigure 4: Unimodal estimates for the wind speed data at different bandwidths. Each plot
shows the pilot estimate (grey) the unimodal estimate (solid black), and the unimodal esti-
mate with roughness penalty (dashed). All plots have the same axis scaling.

speed measurements made at an elevation of 10 meters in Italy’s Messina Strait region

(Alibrandi and Ricciardi 2008). The second data set is bivariate, consisting of standardized

measurements of systolic blood pressure (SBP) and concentration of low density lipoprotein

(LDL) in 160 diseased patients who were part of a larger study of risk factors for heart disease

in South Africa (Hastie and Tibshirani 1987; Hastie et al. 2009). All of the constrained

estimates below were produced using the default settings introduced so far (Gaussian KDE

pilot estimator, L2 objective, grid arrangement of the ψi, and the rule of thumb choices for

k and G).

4.1 Univariate example

The unconstrained KDE for the wind speed data is shown in grey in Figure 4, using four

different bandwidths: 1, 0.75, 0.5, and 0.25 times the Sheather-Jones bandwidth (which

equals 1.55 for these data). These bandwidths were chosen to illustrate the behavior of

constrained estimates as the bandwidth is reduced. The unconstrained estimate at h = hSJ

has three modes: a main central peak, a broad shoulder to its left, and a mode to its right,

caused by an outlying point at speed 30.4. As the bandwidth is reduced, these three modes

become more distinct and additional modes begin to appear.

Suppose it is reasonable to assume that the true distribution of wind speeds is unimodal.

Each plot in Figure 4 also shows (as a solid black line) the best unimodal estimate achieved
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using adjustment curves. In all cases the mode of the best constrained estimate was located at

the same point as the highest mode in the pilot estimate (this need not be the case generally,

as the mode is selected to optimize the objective). These estimates achieve unimodality by

flattening out the density across any constraint violations. The estimate looks increasingly

like a step function as h gets smaller and the number of constraint violations grow. This

illustrates how f̂a does not necessarily inherit the smoothness of the pilot KDE, because the

adjustment curve operates over the whole line, and not just at the data points.

Smoother unimodal estimates can be obtained by adding a roughness penalty to the

objective function, as shown in Figure 4. The resulting penalized unimodal estimates are

also shown in the figure. The penalty causes the estimates to be less sensitive to pilot

bandwidth choice, and prevents the step-like appearance from arising as the bandwidth

is reduced. Nevertheless, the value of roughness-penalized estimation is arguable in this

situation, because the estimates require the selection of both a bandwidth and a smoothing

parameter. For the plots in this example, the smoothing parameter λ was chosen by cross-

validation (Wasserman 2006, p. 127).

A better alternative for improving the smoothness of the estimates is to use a different

shape constraint that more accurately captures the desired qualitative features of the esti-

mate. The bell-shaped constraints are an example of more restrictive criteria that should

produce smoother estimates. Figure 5 shows, for the same four pilot bandwidths, the bell-

shaped estimates of type 1 and 3. At each bandwidth the best choices of inflection points

for each estimate were found using the algorithm described earlier. These shape-restricted

estimates have a high degree of smoothness built in to them by definition, so they cannot

have plateaus or steps in them. Only bandwidth selection is required.

We note in passing that the problem of selecting a bandwidth that is (in some sense)

optimal for a shape-restricted KDE is difficult, and is not addressed here. Fortunately, there

is some justification for simply using a bandwidth that is suitable for the pilot KDE, and

performing the shape adjustment after bandwidth selection. These matters are discussed

in more detail elsewhere (Wolters 2012a,b). For the wind speed data, then, the simplest

approach would be to use a standard bandwidth choice such as hSJ , and to subsequently

apply the bell-shaped constraint. This would produce the estimates in the upper left of

21



Student Version of MATLAB
Figure 5: Bell shaped estimates for the wind speed data. Each plot shows the pilot estimate
(grey), the type 1 bell shaped estimate (black), and the type 3 bell shaped estimate (dashed).
All plots have the same axis scaling.

Figure 5 as the final estimate.

4.2 Bivariate example

The estimator f̂a is in principle easily extended to higher dimensions. If a d-dimensional

estimate is required, one only needs to define the k adjustment densities to be d-variate

functions. The constrained estimator remains linear in a, and a is still a k× 1 vector. Prac-

tical implementation of the method in d dimensions involves two significant complications,

however.

The first difficulty is the potential explosion of the required number of adjustment den-

sities and constraint-checking points as d increases. The size of the system of inequalities in

the QP problem will quickly become unmanageable if the univariate strategy of putting the

ψi and gi on a grid is extended to d-dimensional rectangular meshes. A second, more fun-

damental problem is the inability to express higher-dimensional shape constraints as linear

inequalities in a. Simple univariate constraints like unimodality or bell shape do not trans-

late easily to higher dimensions, and more complex restrictions (for example, unimodality of

all conditional distributions) are difficult to express mathematically without assuming that

a large number of important points are pre-specified.

Despite these difficulties, some progress can be made. The heart disease data is bivariate,
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and for d = 2 it is still possible to put the adjustment densities and constraint-checking points

on a mesh without exceeding the capacities of a typical personal computer. Also, one mul-

tivariate constraint that can be implemented using QP is star unimodality. This constraint

specifies that the density is decreasing along all rays emanating from the mode location m

(Klemelä 2009). When m is taken as known, the directional derivative of f̂a(x) along the ray

from m to gi can be expressed as a function that is linear in a (see the supplementary ma-

terial). The constraint can be implemented by establishing a set of constraint-enforcement

points {gi}, and requiring the directional derivative to be negative at all elements of the set.

Figure 6 shows the star unimodal estimator. The adjustment surface was constructed

using a 20×20 grid of independent bivariate normal distributions, with component standard

deviations equal to the grid spacing. The constraint was enforced at a 35 ×35 grid of points.

The kernel function for the pilot KDE was an uncorrelated bivariate normal density with

covariance matrix h2I. The bandwidth was set to h = 0.23, which maximized a pseudo-

likelihood criterion defined and motivated by Wolters (2012a). Applying the constraint does

improve the qualitative smoothness of the estimate noticeably. The adjusted estimate has

one visible violation of the constraint (noted by an arrow in the figure). Increasing the density

of the grid would eliminate such artifacts, at the cost of longer run time. The estimate in

Figure 6 was obtained in approximately 30 seconds on a laptop computer.

This bivariate example has been provided only as a proof of concept, which may be

of interest given the dearth of shape-constrained density estimators available for higher

dimensions (the log-concave NPMLE being a notable exception). We defer more detailed

consideration of the bivariate case to future work. The simulations of the next section will

focus on one-dimensional estimation.

5 A simulation study

A simulation study was performed to observe how the addition of different shape constraints

influences the quality of estimation afforded by the univariate Gaussian KDE. Data sets for

the simulation were drawn from the t distribution with 3 degrees of freedom, with two sample

sizes, n = 50 or n = 200. At each sample size, 260 data vectors were drawn and used to
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Figure 6: Pilot density estimate (left) and star unimodal estimate (right) for the heart disease
data. The bandwidth used was h = 0.23, and the highest mode of the pilot density (labelled
by a star) was used as the mode for the adjusted estimate.

produce five different estimates: 1) no constraint, 2) unimodal, 3) unimodal and symmetric,

4) type 1 bell shape, and 5) type 1 bell shape and symmetric around zero.

Each estimate was computed at 10 different pilot bandwidths, evenly spaced between 0.2

and 0.8. In total, 13000 estimates were calculated for each sample size (all combinations of

260 data sets, five constraints, and 10 bandwidths).

Note that unimodality, bell shape, symmetry, and symmetry around zero are all true char-

acteristics of the t densities, so each of the constraints introduces valid auxiliary information

that should enhance estimation performance. The main goal of the study was to observe

whether the different constraints, which include different amounts of auxiliary information,

produce appreciable differences in mean estimation quality and bandwidth sensitivity.

The results of the study are summarized in Figure 7, which shows the mean value of the

integrated squared error (ISE) between the estimates and the truth, as a function of h, for

each constraint and both sample sizes. The horizontal dashed line on each plot shows the

mean value of the appropriate distance when each unconstrained KDE was computed with

an oracle bandwidth selector—the bandwidth that actually minimizes the distance between

the estimate and the truth. Performance with the oracle bandwidth represents the best
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Figure 7: Statistical performance of constrained estimates using f̂a, at two sample sizes. The
thick line is the result for the pilot estimator. Labels on the other four lines indicate the
operative constraints: U for unimodality, B for bell shape, and S for symmetry. The dotted
horizontal lines give the performance of the unconstrained estimator with oracle bandwidth.
Both plots have the same axis scaling. The lines in the n = 200 plot are in the same relative
positions as the n = 50 case.

possible performance of an unconstrained KDE, and provides a useful reference point.

The results suggest that adding constraints does improve performance and reduce band-

width sensitivity. The constraints involving more qualitative information yield greater im-

provements. The symmetric and bell shaped estimator performed particularly well, likely

because the correct point of symmetry (zero) was supplied to this estimator. It should also

be noted that the optimal bandwidth is largest for the unconstrained estimate, and becomes

smaller as better constrained estimators are used.

The benefits of adding shape constraints are greatest for the smaller sample size. This

behaviour is expected whenever the pilot estimator is consistent and the constraints are

valid. Constraint violations should get smaller as n increases, leaving less opportunity for

improvement.

The simulation runs also provide information on typical run times required to obtain

constrained estimates. Figure 8 plots the median run time as a function of h and the

constraint type. The run times in the plot reflect the combined effects of two factors: the

size of the system of inequalities necessary to enforce the constraints, and the repetitions

required to find the best inflection or mode points. The system of inequalities becomes larger
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Figure 8: Median run times for the adjustment curve estimates, for two sample sizes. Line
labels are the same as in Figure 7. The unconstrained estimate is not shown because its run
times are too close to zero (typically 0.007s).

as h gets smaller (a consequence of the rule of thumb for choosing k and G), and also becomes

larger when the symmetry constraint is added. Figure 7 suggests optimal bandwidths fall in

the range (0.4, 0.6). In this range, estimates can be obtained quickly: unimodal estimation is

nearly instantaneous, and the most difficult case of symmetry and bell shape can be solved

in 30 seconds or less. These reasonable computation times are a result of the golden section

line search used in the algorithm for finding the important points.

6 Extensions and future work

The method of adjustment curves has some attractive features, foremost of which is the

ability to use fast and reliable quadratic programming routines to obtain many types of

constrained estimates. In addition, the construction of the adjustment curve can be varied

for different purposes, and is not coupled to the form of the estimator, as it is for other

constraint-handling approaches like data sharpening or weighted estimation. This offers

potentially greater flexibility in determining the constrained estimator’s characteristics, and

opens up a number of avenues for refinement or expansion of the method. Several such ideas

are summarized here.

• The method of constructing the adjustment curve is open to alteration. One obvious
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change is to use adjustment densities that are compactly supported. Alternatively, it

may be possible to define ai to be the height of the adjustment curve at point μi, and

to define ψ(x) as a curve that interpolates these points; or to use a spline function,

rather than a linear combination of densities, as the adjustment curve. Such changes

might simplify the construction of Ψ(x) or improve numerical performance.

• Two options for placement of the adjustment densities were proposed in this chapter:

putting them at the data locations, or putting them on a grid. An adaptive or hybrid

method of locating the adjustment densities could be proposed, that combines the

advantages of both options by putting more densities in data-rich regions, and a regular

grid of densities in data-poor regions.

• Many shape constraints are actually restrictions on the derivatives of the estimate. It

may be possible to apply the adjustment curve to the appropriate derivative of the

KDE rather than to the KDE itself. This approach could be expected to give better

numerical stability and smoother density estimates.

• It should be possible to adapt the adjustment curve approach to constrained nonpara-

metric regression problems. Because of its additive structure, it may be easier to find

an optimal adjustment than to constrain the regression estimator directly.

The question of bandwidth selection for shape-restricted KDEs was briefly touched upon

at the end of Section 4.1. Further exploration of improvements to bandwidth selection is

certainly warranted. Work on bandwidths for density derivative estimation (e.g. Henderson

and Parmeter 2012) may be relevant, since most of our constraints are based on derivatives

of the density. It is also possible that enforcing constraints may produce a side benefit of

improved bandwidth selection when using data-driven selection procedures such as least-

squares cross validation. This question has already been explored for constraints handled

by data sharpening (Wolters 2012a); similar work could be carried out for the adjustment

curve method.

This article has focused solely on problems for which QP can be used to find solutions. It

is important to note that f̂a is not limited to only these cases. As long as a sufficiently effec-

tive optimizer is available, other constraints could be satisfied by this adjustment method.
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For example, a particle swarm optimizer has been proposed (Wolters 2012c) for general

constrained estimation problems.

7 Supporting Information

S1 Code. A MATLAB implementation. Functions and scripts for constrained esti-

mation using the methods of this article (ZIP).

S2 Appendix. Sample quadratic programs. A document describing in detail for

several examples how the objective function and constraints are expressed in the form of Eq

(2) through (5) (PDF).
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AdjBellShaped1KDE.m

function [f C] = AdjBellShaped1KDE(x,data,h,varargin)
% [f C] = AdjBellShaped1KDE(x,data,h) 
%
% A utility function to get density values from the bell shaped (type 1)
% adjustment-curve adjusted kde in one function call.  This is intended to be used
% with the MLbandwidth function for bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
% varargin holds parameter-value pairs that are passed along to adjustpdf()
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%

%Needed objects
n = length(data);
hSJ = SJbandwidth(data);

%The pilot estimator
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 

%Set up the adjustment densities. Need to go well past the data on either side.
a = min(data)-6*hSJ;
b = max(data)+6*hSJ;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(x,r) NormalGridFcn(x,r,mu,sig);

%Create cell array to hold optional inputs
optinputs = cell(0);

%Set the default ngrid if it wasn't passed in varargin.
if ~any(strcmp(varargin,'ngrid'))
    optinputs{1} = 'ngrid';
    optinputs{2} = 2*k;
end

%If opts wasn't passed in varargin, set default value. If opts WAS passed in
%varargin, combine its fields with defaults (giving preference to whatever's in
%varargin's version)
if ~any(strcmp(varargin,'opts'))
    optinputs{end+1} = 'opts';
    optinputs{end+1} = struct('MaxIter',1e4,'Display','off');
else
    i = find(strcmp(varargin,'opts'),1);
    opts = varargin{i+1};
    j = find(strcmp(fieldnames(opts),'MaxIter'),1);
    if isempty(j)
        opts.MaxIter = 1e4;
    end
    j = find(strcmp(fieldnames(opts),'Display'),1);
    if isempty(j)
        opts.Display = 'off';
    end
    varargin{i+1} = opts;
end

%Prepare for optimizing.  Need to find the best mode location.
con = {'bellshaped'}; 
fcn = @(v) adjustpdfFVAL(f0,myfi,con,bounds,'pts',v,optinputs{:},varargin{:});

%Find the best locations of the inflection points.
v0 = bounds(1) + (1:2)*range(bounds)/3;
[pts fmin] = SequentialLineMin(fcn,bounds,v0);

%Run the esitmator once more with optimal m and get outputs for this function.
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'pts',pts,optinputs{:},...
                                   varargin{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.pts = pts;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end







AdjBellShaped3KDE.m

function [f C] = AdjBellShaped3KDE(x,data,h,varargin)
% [f y] = AdjBellShaped1KDE(x,data,h) 
%
% A utility function to get density values from the bell shaped (type 3)
% adjustment-curve adjusted kde in one function call.  This is intended to be used
% with the MLbandwidth function for bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
% varargin holds parameter-value pairs that are passed along to adjustpdf()
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%

%Needed objects
n = length(data);
hSJ = SJbandwidth(data);

%The pilot estimator
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 

%Set up the adjustment densities. Need to go well past the data on either side.
a = min(data)-6*hSJ;
b = max(data)+6*hSJ;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(x,r) NormalGridFcn(x,r,mu,sig);

%Create cell array to hold optional inputs
optinputs = cell(0);

%Set the default ngrid if it wasn't passed in varargin.
if ~any(strcmp(varargin,'ngrid'))
    optinputs{1} = 'ngrid';
    optinputs{2} = 2*k;
end

%If opts wasn't passed in varargin, set default value. If opts WAS passed in
%varargin, combine its fields with defaults (giving preference to whatever's in
%varargin's version)
if ~any(strcmp(varargin,'opts'))
    optinputs{end+1} = 'opts';
    optinputs{end+1} = struct('MaxIter',1e4,'Display','off');
else
    i = find(strcmp(varargin,'opts'),1);
    opts = varargin{i+1};
    j = find(strcmp(fieldnames(opts),'MaxIter'),1);
    if isempty(j)
        opts.MaxIter = 1e4;
    end
    j = find(strcmp(fieldnames(opts),'Display'),1);
    if isempty(j)
        opts.Display = 'off';
    end
    varargin{i+1} = opts;
end

%Prepare for optimizing.  Need to find the best mode location.
con = {'bellshaped'}; 
fcn = @(v) adjustpdfFVAL(f0,myfi,con,bounds,'pts',v,optinputs{:},varargin{:});

%Find the best location of the inflection points.
v0 = bounds(1) + (1:3)*range(bounds)/4;
[pts fmin] = SequentialLineMin(fcn,bounds,v0);

%Run the esitmator once more with optimal m and get outputs for this function.
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'pts',pts,optinputs{:},...
                                   varargin{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.pts = pts;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end






EXAMPLES.m

%% Examples Demonstrating the Adjustment Curve Method %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear variables
clc

% This script is meant to be worked through from top to bottom.  The first cell below
% generates data from one of six distributions, and forms a pilot Gaussian KDE from
% these data.  Subsequent cells compute a variety of constrained estimates using
% this pilot pdf, and show the results in plots.

%% 1. Generate data and plot the unconstrained estimate.
n = 50;                                 %-Sample size.
truth = 't3';  %-Change to match one of the cases below.
switch truth
    case 'N(0,1)'
        x = sort(normrnd(0,1,n,1));
    case 't3'
        x = sort(trnd(3,[n,1]));
    case 'defaultmix'
        truemu = [-1 1 5];
        truesd = [0.6 2.5 1.5];
        truemix = [0.35 0.5 0.15];
        x = sort(mixnormrnd(truemu,truesd,truemix,n));
    case 'custommix'
        truemu = [-1 1 4];
        truesd = [1.6 2.5 5.5];
        truemix = [0.35 0.30 0.35];
        x = sort(mixnormrnd(truemu,truesd,truemix,n));
    case 'lognormal'
        mu = 0;
        sigma = 1/2;
        x = sort(lognrnd(mu,sigma,n,1));
    case 'gamma'
        alpha = 3;
        beta = 1;
        x = sort(gamrnd(alpha,beta,n,1));
end

% Create gridpoints for constraint and plotting.
lb = x(1)-0.3*range(x);
ub = x(n)+0.3*range(x);
z = linspace(lb,ub,1000)';               %-Grid for plotting.

% Calculate the true density
switch truth
    case 'N(0,1)'
        truef = normpdf(z);
    case 't3'
        truef = tpdf(z,3);
    case 'defaultmix'
        truef = mixnormpdf(z,truemu,truesd,truemix);
    case 'custommix'
        truef = mixnormpdf(z,truemu,truesd,truemix);
    case 'lognormal'
        truef = lognpdf(z,mu,sigma);
    case 'gamma'
        truef = gampdf(z,alpha,beta);
end

% Get the pilot bandwidth, make a pilot density function and evaluate it at the grid.
h = SJbandwidth(x);            %-USE SJ DPI bandwidth.
f0 = @(g,r) mixnormpdf(g,x,h*ones(n,1),[],r);  %-r is the order of derivative.
fhat0 = f0(z,0);

% Create the figure.
figure(1);
clf
ymax = 1.05*max([truef; fhat0]);
ax1 = subplot('Position',[0.05 0.25 0.9 0.7]);
    hold on
    plot(x,zeros(n,1),'k.');
    line0 = plot(z,truef,'color', 0.75*[1 1 1], 'linewidth', 3);
    line1 = plot(z,fhat0,'k-','linewidth',2);
    legend(ax1,[line0 line1],{'Truth','Pilot'})
    set(gca,'XLim',[lb ub],'YLim',[0 ymax])


%% 2. Get the best unimodal estimate with mode at a user-specified point.
% Plot the adjusted density and also show the adjustment curve underneath. The user
% can specify the mode location well or poorly to explore what the constrained
% estimates look like under different circumstances.

modeloc = 0;   %-User sets this value.

%Call adjustpdf to get the estimate.
con = {'unimodal'};
bounds = [z(1) z(end)];
k = ceil(2*diff(bounds)/h);  %-Use the rule of thumb.
opts = struct('MaxIter',1e4);  %-Increase max iter for quadprog
[alpha adj fhat extra] = adjustpdf(f0,[],con,bounds,'m',modeloc,'k',k,'opts',opts);

%Add the new estimate to the plot
axes(ax1);
    line2 = plot(z,fhat(z,0),'r');
    legend(ax1,[line0 line1 line2],{'Truth','Pilot','Unimodal'})
ax2 = subplot('Position',[0.05 0.025 0.9 0.175]);
    hold on
    tmp = extra.fi(z,0);
    for i = 1:size(tmp,2)
        plot(z,tmp(:,i),'color',0.75*[1 1 1],'LineWidth',1)
    end
    adjcurve = max(tmp(:))/max(adj(z,0)) * adj(z,0);
    plot(z,adjcurve,'r-','LineWidth',1)
    set(gca,'YLim',[min(adjcurve) 1.1*max(adjcurve)],'XLim',[lb ub],...
        'XTickLabel',' ','YTickLabel',' ','Xcolor','w')

    
%% 3. Get the best bell-shaped (type 3) estimate with user-specified "important points"
% Add the bell-shaped estimate to the plot.  Again, the three "important points" are
% user-specified, so the estimate will not be good unless these points are chosen
% properly. 

inflections = [-1 0 1];  %-User sets this (location of the inflection points of f')

%Call adjustpdf to get the estimate.
con = {'bellshaped'};
[alpha adj fhat extra] = adjustpdf(f0,[],con,bounds,'pts',inflections,'k',k,'opts',opts);

%Add the estimate and adjustment curve to the figure.
figure(1);
axes(ax1);
    hold on
    line3 = plot(z,fhat(z,0),'b');
    legend(ax1,[line0 line1 line2 line3],{'Truth','Pilot','Unimodal','Bell-shaped'})
axes(ax2);
    hold on
    tmp = extra.fi(z,0);
    for i = 1:size(tmp,2)
        plot(z,tmp(:,i),'color',0.75*[1 1 1],'LineWidth',1)
    end
    adjcurve = max(tmp(:))/max(adj(z,0)) * adj(z,0);
    plot(z,adjcurve,'b-','LineWidth',1)
    set(gca,'YLim',[min(adjcurve) 1.1*max(adjcurve)],'XLim',[lb ub],...
        'XTickLabel',' ','YTickLabel',' ','Xcolor','w')

    
%% 4. Repeat the estimates, with optimal choice of important points.
% Use functions AdjUnimodalKDE and AdjBellShaped3KDE to repeat the above two
% estimates with automatically-chosen locations of the mode and inflection
% points, respectively. Internally, these functions call the SequentialLineMin
% function to find the optimal choices of important points, in the manner described
% in the paper.

%Call AdjUnimodalKDE to get the best unimodal estimate; show run time.
tic
[fhatU CU] = AdjUnimodalKDE(z,x,h);
toc

%Call AdjBellShaped3KDE to get the best bell-shaped (type 3) estimate; show run time.
tic
[fhatBS CBS] = AdjBellShaped3KDE(z,x,h);
toc

%Make a new figure
figure(2)
clf
ax1 = subplot('Position',[0.05 0.25 0.9 0.7]);
    hold on
    plot(x,zeros(n,1),'k.');
    line0 = plot(z,truef,'color', 0.75*[1 1 1], 'linewidth', 3);
    line1 = plot(z,fhat0,'k-','linewidth',2);
    line2 = plot(z,fhatU,'r');
    line3 = plot(z,fhatBS,'b');
    legend(ax1,[line0 line1 line2 line3],{'Truth','Pilot','Unimodal','Bell-shaped'})
    set(gca,'XLim',[lb ub])
ax2 = subplot('Position',[0.05 0.025 0.9 0.175]);
    hold on
    tmp = CU.extra.fi(z,0);
    for i = 1:size(tmp,2)
        plot(z,tmp(:,i),'color',0.75*[1 1 1],'LineWidth',1)
    end
    adjcurve2 = max(tmp(:))/max(CU.adj(z,0)) * CU.adj(z,0);
    plot(z,adjcurve2,'r-','LineWidth',1)
    adjcurve3 = max(tmp(:))/max(CBS.adj(z,0)) * CBS.adj(z,0);
    plot(z,adjcurve3,'b-','LineWidth',1)
    set(gca,'YLim',[min([adjcurve2; adjcurve3]) 1.1*max([adjcurve2; adjcurve3])],...
        'XLim',[lb ub],'XTickLabel',' ','YTickLabel',' ','Xcolor','w')

    
%% 5a. Find a symmetric an unimodal estimate
% First find the best symmetric and unimodal estimate for the default h_SJ bandwidth;
% then use the MLbandwidth function to do bandwidth selection.
% This part is obviously not that useful if the true density is not unimodal, though
% it will still run in this case.

% Get the estimate with h_SJ, and plot it.
tic
[fhatSU CSU] = AdjSyUnimodalKDE(z,x,h);
toc
figure(3)
clf
hold on
plot(x,zeros(n,1),'k.');
line0 = plot(z,truef,'color', 0.75*[1 1 1], 'linewidth', 3);
line1 = plot(z,fhat0,'k-','linewidth',2);
line2 = plot(z,fhatSU,'g');
set(gca,'XLim',[lb ub])
legend([line0 line1 line2],{'Truth','Pilot','Sym. Uni., h_{SJ}'})

%% 5b. Do bandwidth selection for the symmetric and unimodal estimate.
% Now search for the best bandwidth using the h_ML bandwidth selection rule (see
% Wolters 2012a reference in the paper for more information).
% *** WARNING: this can be slow (tens of minutes), because the search at the   ***
% *** small bandwidth values requires solving a large QP problem (more adjust- ***
% *** ment densities must be used when h is small).                            ***

%Find the optimal bandwidth.
tic
hbest = MLbandwidth(x,@AdjSyUnimodalKDE,'method','ML','nbw',20,'hosrange',[0.25 1.25]);
toc
%Re-run the estimation using the optimal bandwidth and add to the plot.
[fhatSU2 CSU2] = AdjSyUnimodalKDE(z,x,hbest);
line3 = plot(z,fhatSU2,'m');
legend([line0 line1 line2 line3],{'Truth','Pilot','Sym. Uni., h_{SJ}','Sym. Uni., h_{ML}'})


%% 6. Do a bivariate star-unimodal estimate
% Note, this example runs independently from the above code.  We will generate
% bivariate independent standard normal variates and impose the star unimodality
% constraint on a Gaussian KDE.  The pilot estimate uses a product-kernel bandwidth,
% with bandwidth in each direction set to 0.75 times the SJ bandwidth (this produces
% more constraint violations).

n = 50;     %-Sample size
x = normrnd(0,1,n,2);  %-Generate the data.
p = [0.95 0.9:-0.1:0.1 0.05];  %-probabilities for plotting level curves.
h1 = 0.75*SJbandwidth(x(:,1));
h2 = 0.75*SJbandwidth(x(:,2));
k = [20 20];        %-Dimensions of grid of adjustment densities.
sdmult = 1;         %-sd of adj densities is sdmult*spacing in each direction.
nplot = 200;        %-grid size for plotting is nplot-by-nplot.
ngrid = [35 35];    %-Dimensions of constraint-checking grid.

%---Set up adjustment function (k(1) by k(2) grid of normals)---
bounds = [min(x(:,1))-h1 max(x(:,1))+h1; min(x(:,2))-h2 max(x(:,2))+h2];
mu1 = linspace(bounds(1,1),bounds(1,2),k(1));
mu2 = linspace(bounds(2,1),bounds(2,2),k(2));
[MU1 MU2] = meshgrid(mu1,mu2);
mu = [MU1(:) MU2(:)];
sd = sdmult*[mu1(2)-mu1(1) mu2(2)-mu2(1)];
myfi = @(x,r) BVNormalGridFcn(x,r,mu,sd)/n;   %Divide by n to improve scaling?

%---Create the pilot estimator---
f0 = @(v,r) sum(BVNormalGridFcn(v,r,x,[h1 h2]),2)/n;

%---Create figure and plot the pilot esimate---
figure(4)
clf
subplot('Position',[0.05 0.05 0.4 0.9])
    rng1 = linspace(-4,4,nplot);
    rng2 = linspace(-4,4,nplot);
    [R1 R2] = meshgrid(rng1,rng2);
    R = [R1(:) R2(:)];
    fhat0 = reshape(f0(R,0),size(R1));
    hold on
    fcrit = FindHeights2D(fhat0,R1,R2,p);
    contour(R1,R2,fhat0,fcrit,'LineWidth',2)
    colormap cool
    plot(x(:,1),x(:,2),'ko','MarkerFaceColor','k','MarkerSize',2)
    xlabel('x1')
    ylabel('x2')
    title('Pilot Estimate')
    
%---find the highest mode---
ff = f0(R,0);
best = find(ff==max(ff),1,'first');
m = R(best,:);
plot(m(1),m(2),'ro','MarkerFaceColor','r','MarkerSize',6)

%---Run the solver and plot (use pilot highest peak as mode location)---
usebounds = bounds + [-h1 h1; -h2  h2];
tic
[alpha adj fhat extra] = adjustSTAR2D(f0,myfi,usebounds,m,'ngrid',ngrid,'method','quadprog');
toc

%---Plot the constrained estimate---
subplot('Position',[0.55 0.05 0.4 0.9]);
    fhat1 = reshape(fhat(R,0),size(R1));
    fcrit = FindHeights2D(fhat1,R1,R2,p);
    contour(R1,R2,fhat1,fcrit,'LineWidth',2)
    colormap cool
    hold on
    plot(x(:,1),x(:,2),'ko','MarkerFaceColor','k','MarkerSize',2)
    plot(m(1),m(2),'ro','MarkerFaceColor','r','MarkerSize',6)
    xlabel('x1')
    title('Star Unimodal Estimate')

    







adjustpdf.m

function [alpha adj fhat extra] = adjustpdf(f0,fi,con,bounds,varargin)
%============= ADJUSTING A PDF ESTIMATE TO SATISFY SHAPE CONSTRAINTS ================
% This function takes a pilot density estimator f0(x), and uses a linear combination
% of k adjustment densities fi(x) to create an adjustment curve adj(x), such that 
% fhat(x) = f0(x) + adj(x) satisfies a specified set of shape constraints.  A
% roughness penalty can optionally be applied to ensure fhat(x) is also sufficiently
% smooth.  The optimal coefficients of the linear combination are found using
% quadprog(), so the shape control is limited to options expressible as linear
% constraints and quadratic objectives.
% 
% Example Calls:
%   alpha = adjustpdf(f0,fi,con,bounds)  Returns coefficients alpha such that 
%                                 sum(fi(x)*alpha) is the ISE-optimal adjustment 
%                                 curve satisfying the constraints listed in con over
%                                 [bounds(1), bounds(2)].
%   [alpha adj] = adjustpdf(...)  Also returns adj(x,r), an inline function for
%                                 calculating the rth derivative of the adjustment.
%   [alpha adj fhat] = adjustpdf(...)   Also returns fhat(x,r), an inline function for
%                                 calculating the adjusted pdf.
%   [alpha adj fhat extra] = adjustment(...)    Also returns extra outputs from the
%                                 call to quadprog.
%   [...] = adjustpdf(f0,fi,con,'Parameter',Value)  Sets optional inputs (see below).
%
% Required Inputs:
%   f0      Handle to a vectorized function allowing the pilot density estimate and  
%           its derivatives to be calculated at some x.  f0(x,r) calculates the value
%           of the rth derivative of f0 at x.  The function must be able to calculate
%           derivatives to order 3 (r = 0, 1, 2, 3). r = 0 gives the density itself.
%   fi      If fi==[], a regular grid of k normal pdfs is used.  The grid extends
%           from bounds(1) to bounds(2). The densities have standard deviation sdmult
%           times the grid spacing. If fi is a function handle, fi(x,r) should return
%           a length(x)-by-k matrix of values.  The (i,j)th element of this matrix is
%           the value of the rth derivative of the jth adjustment density at the ith
%           x value. 
%   con     A cell array of strings indicating which constraints to invoke.
%           Allowable elements of the cell array are: 'unimodal', 'bellshaped',
%           'symmetric', 'increasing', 'decreasing', 'decreasing2', 'decreasingPOS',
%           'decreasing2POS', and 'nonneg'.  See Notes 3 and 4.  
%           Certain constraints require additional optional inputs to be set:
%             -'unimodal' requires optional input 'm'.
%             -'bellshaped' requires optional input 'pts'.
%             -'symmetric' forces the point of symmetry to be mean(bounds).
%   bounds  A 2-vector giving lower and upper limits for the range over which the
%           constraints should be enforced.
%
% Optional Inputs (parameter-value pairs):
%       Parameter       Value
%       ---For Any Constraint---
%       'obj'           A string specifying the objective function to use. 'ISE' uses
%                       the integrated squared error; 'alphas' uses alpha'*alpha.
%       'ngrid'         The number of gridpoints at which to evaluate constraints.
%                       Default 200.  If ngrid is a non-decreasing vector of values,
%                       these values are used as the constraint-checking points
%                       rather than the default uniformly-spaced grid.
%       'k'             The number of densities to use if fi==[]. Default 100. If 
%                       fi() is provided, this input is ignored.
%       'method'        Determines which optimization function is called: 'quadprog'
%                       uses matlab's optimization toolbox function, 'e04nc' uses NAG
%                       toolbox dense solver, 'e04nq' uses NAG toolbox sparse solver.
%                       ***Options 'e04nc' and 'e04nq' require NAG toolbox to be
%                       installed***
%       'sdmult'        When fi==[], the adjustment densities have stddev equal to
%                       sdmult times the means' spacing.  Default is 1.
%       'penalty'       A length-4 cell array specifying how to apply a roughness
%                       penalty.  Elements are {order, adjonly, weighted, lambda}:
%                         -order is either 2 or 3 to indicate penalizing
%                          the total squared 2nd or 3rd derivative. 
%                         -adjonly==true means only penalize the roughnessof the
%                          adjustment (otherwise penalize fhat).
%                         -weighted==true means the penalty is weighted by the
%                          unsigned curvature of f0
%                         -lambda is the smoothing parameter.
%                       So the usual penalty on integrated squared second derivative
%                       of the estimate is specified as {2, false, false, lambda}.
%                       Input [] or {} to apply no penalty (this is the default).
%       'opts'          Additional optimization options to add when calling quadprog.
%       ---For Unimodal Constraint---
%       'm'             The location of the mode.
%       ---For Bellshaped Constraints--- (see note 3)
%       'pts'           The reference points for the constraint.  For type 1, pts =
%                       [L R], the location of the two inflection points of f.  For
%                       type 2, pts = [v1 L R v2], where L & R are the inflection
%                       points of f and v1, v2 are the inflection points of f' in the
%                       two tails. For type 3, pts = [v1 v2 v3], the locations of the
%                       inflection points of f'. In all cases the reference points
%                       should be given in increasing sequence. The type of
%                       bell-shape desired is inferred from length(pts).
%       ---For Symmetric Constraint---
%       'symtol'        Tolerance value for symmetry constraint, expressed as a 
%                       fraction of the highest point on f0. Default 0.01.
%       ---For Nearly Parametric constraint--- (see note 3)
%       'fpar'          A function handle to a vectorized function fpar(g,r) that can
%                       calculate the rth derivative of the best-fitting parametric
%                       density at g.
%       'r'             The derivative to use (r = 0, 1, 2, or 3).
%       'tol'           A tolerance to determine how distant the estimate may be from
%                       the parametric form (pointwise).
%       ---For Non-negative support constraint---
%       'negtol'        The maximum f value allowed for negative x.  Default 1e-6.
% 
% Notes:
%   1) Quadprog minimizes 
%        (1/2)*alpha'*H*alpha + v'*alpha    (quadratic objective, we use H = D + S)
%      with constraints 
%        LB <= alpha <= UB            (bound constraints)
%        Aeq*alpha == beq             (linear equality constraints)
%        A*alpha <= b                 (linear inequality constraints)
%      The purpose of this function is to set up H, v, LB, UB, Aeq, beq, A, and b to
%      implement the specified shape-constrained optimization, and then call quadprog.
%   2) So far no checking has been done to ensure that specified constraints are
%      consistent.
%   3) Type 2 bell shape and the nearly-parametric constraint were not mentioned in
%      article that this code accompanies.  To learn more, see Wolters (2012b) Ph.D.
%      thesis, "Methods for Shape-Constrained Kernel Density Estimation," University
%      of Western Ontario.
%   4) decreasing2 refers to 2-monotonicity.  Constraints increasing, decreasing, 
%      decreasing2 aren't suitable for a pilot estimator that is a KDE. decreasingPOS
%      and decreasing2POS enforce the decreasing constraints only on the positive
%      half-line.  
% 
% To Do:
%   - Make 'symmetric' constraint work with user-supplied mode.
%====================================================================================


%==INPUT CHECKING====================================================================
%--Parse the inputs------------------------------------------------------------------
IP = inputParser;                       %-Create instance of inputParser class.
IP.addRequired('f0', @(v) isa(v,'function_handle') );
IP.addRequired('fi', @(v) isa(v,'function_handle') || isempty(v) );
IP.addRequired('con', @(v) iscell(v) && ~isempty(v) );
IP.addRequired('bounds', @(v) isnumeric(v) && length(v)==2 && diff(bounds)>0 );
IP.addParamValue('obj', 'ISE', @(v) ischar(v) && ismember(v,{'ISE','alphas'}) );
IP.addParamValue('ngrid', 200, @(v) isvector(v) );
IP.addParamValue('k', 100, @(v) isscalar(v) && v>0 && mod(v,1)==0 );
IP.addParamValue('method', 'quadprog', @(v) ismember(v,{'quadprog','e04nc','e04nq'}) );
IP.addParamValue('sdmult', 1, @(v) isscalar(v) && v>0 );
IP.addParamValue('penalty', [], @(v) isempty(v)||(iscell(v) && length(v)==4) );
IP.addParamValue('opts', [], @(v) isstruct(v) );
IP.addParamValue('m', mean(bounds), @(v) isscalar(v) && v<bounds(2) && v>bounds(1) );
IP.addParamValue('pts', [bounds(1)+range(bounds)/3 bounds(2)-range(bounds)/3], ...
                 @(v) length(v)>1&&length(v)<5&&max(v)<bounds(2)&&min(v)>bounds(1) );
IP.addParamValue('symtol', 0.01, @(v) isnumeric(v) && length(v)==1 && v>=0 && v<=1 );
IP.addParamValue('fpar', [], @(v) isa(v,'function_handle') );
IP.addParamValue('r', 0, @(v) ismember(v,[0 1 2 3]) );
IP.addParamValue('tol', 0.1, @(v) isscalar(v) && v>0 );
IP.addParamValue('negtol', 1e-6, @(v) isscalar(v) && v>0 );
IP.parse(f0,fi,con,bounds,varargin{:}); %-Parse and validate input arguments.
IP.FunctionName = 'adjustpdf';          %-Other parser settings
%--Put the optional arguments into the function workspace----------------------------
m = IP.Results.m;
pts = IP.Results.pts;
penalty = IP.Results.penalty;
obj = IP.Results.obj;
ngrid = IP.Results.ngrid;
k = IP.Results.k;
sdmult = IP.Results.sdmult;
symtol = IP.Results.symtol;
method = IP.Results.method;
opts = IP.Results.opts;
fpar = IP.Results.fpar;
r = IP.Results.r;
tol = IP.Results.tol;
negtol = IP.Results.negtol;


%==SET UP NEEDED OBJECTS=============================================================
%--Set up g, the grid of points for constraint evaluation----------------------------
if length(ngrid)==1
    G = ngrid;
    g = linspace(bounds(1),bounds(2),G)';
else
    G = length(ngrid);
    g = ngrid;
end
spc = diff(g);                            %-Constraint grid (nonuniform) spacing.
c = [spc(1); spc(1:end-1)+spc(2:end); spc(end)]/2;  %-Coeffs for nonunif trapz rule.
%--Finish setup of adjustment densities----------------------------------------------
%If no fi provided, set up the grid of normal densities. If fi is provided, call it 
%once to figure out what k is.
if isempty(fi)
    mu = linspace(bounds(1),bounds(2),k);
    spacing = range(mu)/(k-1);
    sd = sdmult*spacing;
    fi = @(x,r) NormalGridFcn(x,r,mu,sd);           %-Create anonymous function.
else
    k = length(fi(sum(bounds)/2,0));
end
%--Calculate f0 and the fi's, and their derivatives, at the gridpoints---------------
FI = fi(g,0);                       %-G-by-k matrix, jth col is fj(g).
FI1 = fi(g,1);                      %-G-by-k, first derivative of fi's.
FI2 = fi(g,2);                      %-G-by-k, second derivative of fi's.
FI3 = fi(g,3);                      %-G-by-k, third derivative of fi's.
F0 = f0(g,0);                       %-G-by-1 vector, f0(g).
F01 = f0(g,1);                      %-G-by-1, first derivative of f0.
F02 = f0(g,2);                      %-G-by-1, second derivative of f0.
F03 = f0(g,3);                      %-G-by-1, third derivative of f0.


%==SET UP OBJECTIVE FUNCTION=========================================================
if strcmp(obj,'alphas')
    D = eye(k);    
else
    D = zeros(k);                   %-Initialize D.
    for l = 1:G
        f = FI(l,:)';
        D = D + c(l)*(f*f');          %-Add matrix for each point in g.
    end
    if ~strcmp(obj,'ISE')
        warning('MW:inputproblem',...
        'Invalid option specified for objective function.  Using ISE instead.')        
    end
end


%==SET UP MANDATORY CONSTRAINTS======================================================
%--Area constraint-------------------------------------------------------------------
Aeq = ones(1,k);
beq = 0;
%--Non-negativity constraint---------------------------------------------------------
A = -FI;
b = F0;


%==SET UP OPTIONAL CONSTRAINTS=======================================================
if ismember('unimodal',con)
    if ~any(strcmp('m',varargin))
        warning('MW:inputproblem',...
        'Unimodal constraint with no mode specified.  Using midpoint of bounds.')
    end
    SignMatrix = sign(g-m)*ones(1,k);
    A2 = SignMatrix.*FI1;
    b2 = sign(m-g).*F01;
    A = [A; A2];
    b = [b; b2];
end

if ismember('bellshaped',con)
    if ~any(strcmp('pts',varargin))
        warning('MW:inputproblem',...
        'Bellshaped constraint with no control points specified. Using defaults.')
    end
    switch length(pts)
        case 2 %Type 1
            L = pts(1);
            R = pts(2);
            SignMatrix = (sign(g-L).*sign(R-g))*ones(1,k);
            A2 = SignMatrix.*FI2;
            b2 = sign(g-L).*sign(g-R).*F02;
            A = [A; A2];
            b = [b; b2];            
        case 4 %Type 2
            grp1 = g<=pts(1);
            grp2 = g>pts(1) & g<=pts(2);
            grp3 = g>pts(2) & g<=pts(3);
            grp4 = g>pts(3) & g<=pts(4);
            grp5 = g>pts(4);
            A2 = [-FI3(grp1,:); FI3(grp2,:); FI2(grp3,:); -FI3(grp4,:); FI3(grp5,:)];
            b2 = [F03(grp1); -F03(grp2); -F02(grp3); F03(grp4); -F03(grp5)];
            A = [A; A2];
            b = [b; b2];            
        case 3 %Type 3
            v1 = pts(1);
            v2 = pts(2);
            v3 = pts(3);
            SignVec = (sign(g-v1).*sign(g-v2).*sign(g-v3));
            SignMatrix = SignVec*ones(1,k);
            A2 = SignMatrix.*FI3;
            b2 = -SignVec.*F03;
            A = [A; A2];
            b = [b; b2];            
    end
end

if ismember('symmetric',con)
    %We'll make 2R inequality constraints, to ensure that gridpoints on the opposite
    %sides of the symmetry point are equal to within +/- epsilon.
    epsilon = symtol*max(F0);
    if mod(G,2)==0
        R = G/2;
    else
        R = (G-1)/2;
    end
    tophalf = 1:R;                      %-Indices of top half of FI, F0 vals.
    botflah = G:-1:G-R+1;               %-Indices of bot half of FI, F0 in reverse.
    M = FI(tophalf,:) - FI(botflah,:);
    V = F0(botflah) - F0(tophalf);
    A2 = [A; M; -M];
    b2 = [b; V+epsilon; -V+epsilon];    
    A = [A; A2];
    b = [b; b2];
end

if ismember('increasing',con)
    A2 = -FI1;
    b2 = F01;
    A = [A; A2];
    b = [b; b2];

end

if ismember('decreasing',con)
    A2 = FI1;
    b2 = -F01;
    A = [A; A2];
    b = [b; b2];

end

if ismember('decreasing2',con)
    A2 = FI1(1:G-1,:) - FI1(2:G,:);
    b2 = F01(2:G) - F01(1:G-1);
    A = [A; A2];
    b = [b; b2];
end

if ismember('decreasingPOS',con)
    gpos = g>0;
    A2 = FI1(gpos,:);
    b2 = -F01(gpos);
    A = [A; A2];
    b = [b; b2];

end

if ismember('decreasing2POS',con)
    gpos = find(g>0,1,'first');
    A2 = FI1(gpos:G-1,:) - FI1(gpos+1:G,:);
    b2 = F01(gpos+1:G) - F01(gpos:G-1);
    A = [A; A2];
    b = [b; b2];
end

if ismember('nearlyparametric',con)
    if ~any(strcmp('fpar',varargin))
        error('MW:inputproblem',...
        'Nearly parametric constraint specified, but no parametric density provided.')
    end
    if ~any(strcmp('r',varargin))
        warning('MW:inputproblem',...
        'Order of derivative not specified. Using r = 0.')
    end
    if ~any(strcmp('tol',varargin))
        warning('MW:inputproblem',...
        'Tolerance for nearly parametric constraint not specified. Using 0.1')
    end
    Tol = tol*ones(G,1);
    p = fpar(g,r);
    Fr = f0(g,r);
    FIr = fi(g,r);
    A2 = [-FIr; FIr];
    b2 = [Tol - p + Fr; Tol + p - Fr];
    A = [A; A2];
    b = [b; b2];
end

if ismember('nonneg',con)
    gneg = g<0;
    A2 = FI(gneg,:);
    b2 = negtol - F0(gneg);
    A = [A; A2];
    b = [b; b2];
end


%==SET UP PENALTY IF REQUIRED========================================================
S = zeros(k);
v = zeros(k,1);
lambda = 0;
if ~isempty(penalty)
    %--Unpack the inputs-------------------------------------------------------------
    r = penalty{1};
    adjonly = penalty{2};
    weighted = penalty{3};
    lambda = penalty{4};
    if ~ismember(r,[2 3])
        warning('MW:inputproblem',...
        'Invalid order supplied for penalty.  Using r = 2.');
        r = 2;
    end
    %--Set up vector of weights------------------------------------------------------
    if weighted
        ucurv = abs(F02)./(1+F01.^2).^(3/2);   %-Unsigned curvature vals of f0. 
        w = ucurv/max(ucurv);
    else
        w = ones(G,1);
    end
    %--Construct the S matrix and v vector-------------------------------------------
    flag = ~adjonly;                    %-If flag==true, linear term is nonzero.
    if r==2                             %-Penalize based on 2nd derivative.
        for l = 1:G
            f = FI2(l,:)';
            S = S + w(l)*c(l)*(f*f');
            v = v + flag*2*w(l)*c(l)*F02(l)*FI2(l,:)';
        end
    else                                %-Penalize based on 3rd derivative.
        for l = 1:G
            f = FI3(l,:)';
            S = S + w(l)*c(l)*(f*f');
            v = v + flag*2*w(l)*c(l)*F03(l)*FI3(l,:)';
        end
    end
end


%==CALL QUADPROG TO GET THE SOLUTION AND COLLECT EXTRA OUTPUTS=======================
global H                          %-Make H global in order to use it in qphx.
switch method
    case 'quadprog'
        options = optimset('quadprog');         %-Start with defaults for quadprog.
        options = optimset(options,'MaxIter',1e3);  %-Increase maxiter
        options = optimset(options,opts);       %-Add in user-specified changes.
        LB = -Inf*ones(k,1);                    %-Lower bounds on alphas.
        UB = Inf*ones(k,1);                     %-Upper bounds on alphas.
        H = 2*(D+lambda*S);                     %-Add objfun and penalty parts.
        H = (H+H')/2;                           %-Be doubly sure it's symmetric.
        cvec = lambda*v;                        %-coeff vec for linear part of OF.
        warning off all
        [alpha,fval,exitflag,output] = quadprog(H,cvec,A,b,Aeq,beq,LB,UB,[],...
                                                options);
        warning on all
        extra = struct('exitflag',exitflag,'output',output,'D',D,'S',S,'v',v, ...
                       'A',A,'b',b,'Aeq',Aeq,'beq',beq);
    case 'e04nc'
    %This function optimizes c'*alpha + (1/2)*alpha'*H*alpha, subject to bound
    %constraints bl <= alpha <= bu and linear constraints bl <= C*alpha <= bu.  So
    %all equality and inequality constraints have to be specified through the C
    %matrix and the bl, bu bounds.  And bl, bu need extra elements for bnds on alpha.
        [cwsav,lwsav,iwsav,rwsav,ifail] = e04wb('e04nc');
        [lwsav,iwsav,rwsav,inform] = e04ne('Problem Type = QP2',lwsav,iwsav,rwsav);
        [lwsav,iwsav,rwsav,inform] = e04ne('Feasibility Phase Iteration Limit = 5000', ...
                                           lwsav,iwsav,rwsav);
        [lwsav,iwsav,rwsav,inform] = e04ne('Optimality Phase Iteration Limit = 5000', ...
                                           lwsav,iwsav,rwsav);
        minus_inf = -1e21;                %-A number smaller than NAG infinite bound.
        plus_inf = 1e21;
        C = [Aeq; A];                     %-Combine equality & inequality constr.
        ncon = size(C,1);                 %-Number of constraints.
        bl = minus_inf*ones(k+ncon,1);    %-Initialize lower bounds.
        bl(k+1:k+length(beq)) = beq;      %-Set lower bounds for equality constrts.
        bu = [plus_inf*ones(k,1); beq; b];%-Set all upper bounds.
        istate = zeros(k+ncon,1,'int32'); %-Init state of cons (unnec for cold start)
        kx = zeros(k,1,'int32');          %-Not needed for QP2 type prob.
        alpha0 = zeros(k,1);              %-Initial guess, all zeros.
        H = 2*(D+lambda*S);               %-Matrix in the obj fun.
        H = (H+H')/2;                     %-Be doubly sure it's symmetric.
        cvec = lambda*v;                  %-coeff vec for linear part of OF.
        data = zeros(k,1);                %-Not used in prob type QP2.
        [istateOut,kxOut,alpha,HOut,dataOut,iter,fval,clamda, ...
         lwsavOut,iwsavOut,rwsavOut,ifail] = ...
         e04nc(C,bl,bu,cvec,istate,kx,alpha0,H,data,lwsav,iwsav,rwsav);
        extra = struct('D',D,'S',S,'v',v,'A',A,'b',b,'Aeq',Aeq,'beq',beq, ...
                       'istateOut',istateOut,'kxOut',kxOut,'HOut',HOut, ...
                       'dataOut',dataOut,'iter',iter,'clamd',clamda, ...
                       'lwsavOut',lwsavOut,'iwsavOut',iwsavOut, ...
                       'rwsavOut',rwsavOut,'exitflag',ifail);
    case 'e04nq'
    %This function optimizes q + c'*alpha + (1/2)*alpha'*H*alpha, subject to bound
    %constraints bl <= alpha <= bu and linear constraints bl <= C*alpha <= bu.
    %Constraints specified in a way similar to e04nc, but the matrix C is sparse.
        [cw,iw,rw,ifail] = e04np();        
        [cw, iw, rw, ifail] = e04ns('Elastic Weight = 1000', cw, iw, rw);
        minus_inf = -1e21;                %-A number smaller than NAG infinite bound.
        plus_inf = 1e21;
        cvec = lambda*v;                  %-coeff vec for linear part of OF.
        C = [cvec' ;Aeq; A];              %-Combine "objective row" and all constrts.
        C(abs(C)<eps) = 0;                     %-Drop tiny numbers to be sparse.
        ncon = size(C,1);                 %-Number of constraints.
        bl = minus_inf*ones(k+ncon,1);    %-Initialize lower bounds.
        bl(k+2:k+length(beq)+1) = beq;      %-Set lower bounds for equality constrts.
        bu = [plus_inf*ones(k+1,1); beq; b];%-Set all upper bounds.
        H = 2*(D+lambda*S);               %-Matrix in the obj fun.
        H = (H+H')/2;                     %-Be doubly sure it's symmetric.
        H(abs(H)<eps) = 0;                %-Drop tiny numbers to be sparse.
        mm = int32(ncon);                 %-Number of constraints.
        nn = int32(k);                    %-Dimension of alpha.
        lenc = int32(0);                  %-Don't put cvec into the input list, since
        cvec = 0;                         % we've added it to the C matrix using iobj.
        ncolh = int32(k);                 %-Num leading nonzero cols of H.
        iobj = int32(1);                  %-Location of objective row in C.
        objadd = 0;                       %-Constant to add to objfun.
        [rr cc vv] = find(sparse(C));     %-Get nonzero elements and their locations.
        acol = vv;
        inda = int32(rr);
        %-loca holds locations where acol and inda switch to the next column of C.
        loca = int32([1 1+full(cumsum(sum(spones(C),1)))]');
        helast = int32([zeros(nn+2,1); 3*ones(mm-2,1)]);    %-Make inequalities elastic.
        hs = zeros(nn+mm,1,'int32');      %-related to initialization procedures.
        xx = zeros(nn+mm,1);              %-Initial values for alpha and slacks.
        ns = int32(0);                    %-Not used if 1st argument is 'C'.
        [hs,xx,Pi,rc,ns,ninf,sinf,fval,user,cw,iw,rw,ifail] = e04nq('C','qphx', ...
         mm,nn,lenc,ncolh,iobj,objadd,'        ',acol,inda,loca,bl,bu, ...
         cvec,{''},helast,hs,xx,ns,cw,iw,rw);
        alpha = xx(1:k);
        extra = struct('D',D,'S',S,'v',v,'A',A,'b',b,'Aeq',Aeq,'beq',beq, ...
                       'hs',hs,'xx',xx,'Pi',Pi,'rc',rc,'ns',ns,'ninf',ninf, ...
                       'sinf',sinf,'user',user,'cw',{cw},'iw',iw, ...
                       'rw',rw,'exitflag',ifail);
end


%==PREPARE THE REST OF THE OUTPUTS===================================================
adj = @(x,r) fi(x,r)*alpha;
fhat = @(x,r) f0(x,r) + adj(x,r);
extra.fval = fval;
extra.fi = fi;

end






AdjUnimodalKDE.m

function [f C] = AdjUnimodalKDE(x,data,h,varargin)
% [f C] = AdjUnimodalKDE(x,data,h) 
%
% A utility function to get density values from the unimodal adjustment-curve
% adjusted kde in one function call.  This is useful, e.g., when using the
% MLbandwidth function to do bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
% varargin holds parameter-value pairs that are passed along to adjustpdf()
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.

%Needed objects
n = length(data);
hSJ = SJbandwidth(data);

%The pilot estimator
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 

%Set up the adjustment densities. Need to go well past the data on either side.
a = min(data)-6*hSJ;
b = max(data)+6*hSJ;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(x,r) NormalGridFcn(x,r,mu,sig);

%Create cell array to hold optional inputs
optinputs = cell(0);

%Set the default ngrid if it wasn't passed in varargin.
if ~any(strcmp(varargin,'ngrid'))
    optinputs{1} = 'ngrid';
    optinputs{2} = 2*k;
end

%If opts wasn't passed in varargin, set default value. If opts WAS passed in
%varargin, combine its fields with defaults (giving preference to whatever's in
%varargin's version)
if ~any(strcmp(varargin,'opts'))
    optinputs{end+1} = 'opts';
    optinputs{end+1} = struct('MaxIter',1e4,'Display','off');
else
    i = find(strcmp(varargin,'opts'),1);
    opts = varargin{i+1};
    j = find(strcmp(fieldnames(opts),'MaxIter'),1);
    if isempty(j)
        opts.MaxIter = 1e4;
    end
    j = find(strcmp(fieldnames(opts),'Display'),1);
    if isempty(j)
        opts.Display = 'off';
    end
    varargin{i+1} = opts;
end

%Prepare for optimizing.  Need to find the best mode location.
con = {'unimodal'};
fcn = @(v) adjustpdfFVAL(f0,myfi,con,bounds,'m',v,optinputs{:},varargin{:});

%Find the best mode location.
v0 = sum(bounds)/2;
[m fmin] = SequentialLineMin(fcn,bounds,v0);

%Run the esitmator once more with optimal m and get outputs for this function.
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'m',m,optinputs{:},...
                                   varargin{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.m = m;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end







SequentialLineMin.m

function [minimizer minimum] = SequentialLineMin(fcn,bounds,v0)
% minimizer = SequentialLineMin(fcn,bounds,v0)
%       Uses a sequential search procedure, one variable at a time, to find a
%       minimizer of fcn, a scalar function of r variables.  V0 is a starting
%       solution and bounds is a 2-vector giving upper and lower limits for elements
%       of the solution.
%
% [minimizer minimum] = SequentialLineMin(fcn,bounds,v0)
%       Aslo returns the minimum value, minimum = fcn(minimizer).
%
% This algorithm is designed to search for solutions of the form v = [v1 v2 ... vr],
% where bounds(1) < v1 < v2 < ... < vr < bounds(2). It loops through the solution
% vector one variable at a time, and does a 1-D line search using fminbnd() for an
% improving value of that variable.  So when optimizing v_i, it searches the interval
% (v_(i-1), v(i+1)) to maintain the increasing nature of v. The overall search
% terminates once a pass through all r elements of v fails to produce any changes to
% v.
%
% Values of v_i are only updated if fminbnd returns an exit flag of 1, indicating
% convergence without problems.  If any other exit flag is returned, the value of v_i
% is left unchanged.
% 
% Inputs:
%   fcn     A function handle to a function of one r-vector argument: call as fcn(v).
%   bounds  A 2-vector giving the upper and lower limits for elements of a solution.
%   v0      A starting solution, with increasing elements. An r-vector.
%
% Outputs:
%   minimizer   An r-vector containing the solution.
%   minimum     The objective function value at the solution.

v = v0;
r = length(v);
if size(v,2)>1; v=v'; end               %-Make sure v is a column vector.
stop = false;
myopts = optimset('fminbnd');
myopts = optimset(myopts,'TolX',1e-3);  %-NOTE: adjust tolerance as necessary.

while ~stop
    vold = v;
    fv = fcn(vold);
    for i = 1:r
        fcni = @(u) fcn([v(1:i-1); u; v(i+1:r)]);
        bnd = [bounds(1); v; bounds(2)];
        [vi fvi ef] = fminbnd(fcni,bnd(i),bnd(i+2),myopts);
        if fvi<fv && ef==1
            v(i) = vi;
            fv = fvi;
        end
    end
    stop = all(v==vold);
end

minimizer = v;
minimum = fv;

end








README.txt

README file for software accompanying the article "Using an Additive Adjustment
Curve to Enforce Shape Constraints on a Density Estimate," by Mark A. Wolters
and W. John Braun.

To get started immediately, see the script EXAMPLES.m.  These examples will run
as long as the contents of this zip file are on the MATLAB path.

All of the functions in this .zip archive are listed below with a brief
description.  To get detailed help, type help <FunctionName> at the command line
or look inside the .m file directly.

=========================
=== The main function ===
=========================
adjustpdf.m
  Sets up and solves the quadratic programming problem for a user-specified set of
  constraints, with a given set of important points.

=======================================================================
=== Functions to find constrained estimates with optimally-selected ===
=== important points, in a single function call                     ===
=======================================================================
These functions take the bandwidth as an input; to choose optimal bandwidth they
need to be embedded inside another level of optimization.  This can be done
using the MLbandwidth function described in the next section.

AdjUnimodalKDE.m
  Finds the unimodal estimate with optimal choice of mode location.
  
AdjSyUnimodalKDE.m
  Finds the best symmetric and unimodal estimate.
   
AdjUnimodalPenalizedKDE.m
  Finds the best unimodal estimate with a roughness penalty.  The optimal
  penalty is chosen by cross validation. Note, the mode location is *not*
  automatically chosen by this function (rather, it is an input).
  
AdjBellShaped1KDE.m
  Finds the best bell-shaped (type 1) estimate, automatically choosing the
  locations of the inflection points.

AdjSyBellShaped1KDE.m
  Finds the best symmetric and bell-shaped (type 1) estimate, automatically
  choosing the inflection points and the point of symmetry.

AdjBellShaped3KDE.m
  Finds the best bell-shaped (type 3) estimate, automatically choosing the three
  inflection points of f'.
  
AdjSyBellShaped3KDE.m
  Finds the best symmetric and bell-shaped (type 3) estimate, automatically
  choosing the inflection points of f' as well as the point of symmetry.

adjustSTAR2D.m
  Finds the star-unimodal bivariate estimate.  A copy of adjustpdf.m with
  modifications for the 2D, star-unimodal case.


==================================================================
=== Utility functions and functions used by the above routines ===
==================================================================

adjustpdfFVAL.m
  A wrapper for adjustpdf() that just returns the objective function value.
  Used in the other functions that search for optimal important points.
  
BVNormalGridFcn.m
  Used in the star unimodality case to compute the grid of bivariate normal
  adjustment densities.
  
mixnormpdf.m
  Computes values of a mixture of normal densities.
  
mixnormrnd.m
  Generates random numbers from a user-specified mixture of normal densities.
  
MLbandwidth.m
  Function to perform bandwidth selection by either likelihood cross-validation
  or the h_ML method of Wolters (2012a).
  
NormalGridFcn.m
  Function to compute the grid of normal adjustment densities.
  
PLinDens.m
  For computing the value of a piecewise-linear density or its derivatives,
  given the coordinates of the points of slope change.
  
qphx.m
  Only used when the quadratic programming problem is solved using NAG toolbox
  routines (unikely).
  
SequentialLineMin.m
  Optimization routine to select the best choices of the important points.  Uses
  the algorithm described in the paper.  Used by the all-in-one functions listed
  above.

SJbandwidth.m
  Computes the Sheather-Jones bandwidth for a given sample.
  
TrianGridFcn.m
  Computes values of a grid of triangular density funcitons (anlogous to NormalGridFcn).

FindHeights2D.m
  Finds appropriate values to choose so that level curves in contour plots of
  bivariate densities enclose specified probability masses.  Used in making plots
  for the bivariate star unimodality example.

GSmin1D.m 
  Carries out a univariate golden-section search optimization.  Only used by
  MLbandwidth under certain circumstances.








AdjSyBellShaped1KDE.m

function [f C] = AdjSyBellShaped1KDE(x,data,h)
% [f y] = AdjSyBellShaped1KDE(x,data,h) 
%
% A utility function to get density values from a symmetric and bell shaped (type 1)
% adjustment-curve adjusted kde in one function call.  This is intended to be used
% with the MLbandwidth function for bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%
% The best point of symmetry is found by trying 20 points evenly spaced between
% prctile(data,[20 80]). To this collection is added the location of the pilot's
% highest mode. The bounds for the adjustment curve are set to be equidistant from
% this point of symmetry (as required by adjustpdf).  A tolerance of 0.001 is used
% for the symmetry constraint. For each candidate symmetry point, the function
% SequentialLineMin is called to choose the best inflection points for the
% bell-shaped curve.

%The pilot estimator
n = length(data);
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 
searchrange = prctile(data,[20 80]);
tst = linspace(searchrange(1),searchrange(2),200);
f0est = f0(tst,0);
pilotmode = tst(find(f0est==max(f0est),1,'first'));

%Other needed objects
hSJ = SJbandwidth(data);
nm = 20;                                                    %-Number of sym points.
mvals = [linspace(searchrange(1),searchrange(2),nm) pilotmode];     %-The symmetry points.
tol = 0.001;
con = {'symmetric','bellshaped'}; 
OFs = zeros(nm+1,1);
PTS = zeros(nm+1,2);

for i = 1:nm+1
    m = mvals(i);
    %Set up the bounds, centered at m and covering the data plus some on either side.
    dist = max([m-min(data) max(data)-m])+4*hSJ;
    a = m-dist;
    b = m+dist;
    bounds = [a b];
    k = ceil(2*(b-a)/h);
    sig = (b-a)/(k-1);
    mu = linspace(a,b,k);
    myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
    %Run the optimization
    opts = struct('MaxIter',1e4,'Display','off');  %-Increase max iter for quadprog
    optinputs = {'ngrid',2*k,'symtol',tol,'opts',opts};
    fcn = @(v) adjustpdfFVAL(f0,myfi,con,bounds,'pts',v,optinputs{:});
    %Find the best inflection point locations.
    v0 = bounds(1) + (1:2)*range(bounds)/3;
    [pts fmin] = SequentialLineMin(fcn,bounds,v0);
    PTS(i,:) = pts;
    OFs(i) = fmin;
end

%Run the esitmator once more with optimal m, pts and get outputs for this function.
ix = find(OFs==min(OFs),1,'first');
m = mvals(ix);
pts = PTS(ix,:);
dist = max([m-min(data) max(data)-m])+4*hSJ;
a = m-dist;
b = m+dist;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'pts',pts,optinputs{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.m = m;
C.pts = pts;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end








AdjSyBellShaped3KDE.m

function [f C] = AdjSyBellShaped3KDE(x,data,h)
% [f y] = AdjSyBellShaped3KDE(x,data,h) 
%
% A utility function to get density values from a symmetric and bell shaped (type 3)
% adjustment-curve adjusted kde in one function call.  This is intended to be used
% with the MLbandwidth function for bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%
% The best point of symmetry is found by trying 20 points evenly spaced between
% prctile(data,[20 80]). To this collection is added the location of the pilot's
% highest mode. The bounds for the adjustment curve are set to be equidistant from
% this point of symmetry (as required by adjustpdf).  A tolerance of 0.001 is used
% for the symmetry constraint. For each candidate symmetry point, the function
% SequentialLineMin is called to choose the best inflection points for the
% bell-shaped curve.

%The pilot estimator
n = length(data);
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 
searchrange = prctile(data,[20 80]);
tst = linspace(searchrange(1),searchrange(2),200);
f0est = f0(tst,0);
pilotmode = tst(find(f0est==max(f0est),1,'first'));

%Other needed objects
hSJ = SJbandwidth(data);
nm = 20;                                                    %-Number of sym points.
mvals = [linspace(searchrange(1),searchrange(2),nm) pilotmode];     %-The symmetry points.
tol = 0.001;
con = {'symmetric','bellshaped'}; 
OFs = zeros(nm+1,1);
PTS = zeros(nm+1,3);

for i = 1:nm+1
    m = mvals(i);
    %Set up the bounds, centered at m and covering the data plus some on either side.
    dist = max([m-min(data) max(data)-m])+4*hSJ;
    a = m-dist;
    b = m+dist;
    bounds = [a b];
    k = ceil(2*(b-a)/h);
    sig = (b-a)/(k-1);
    mu = linspace(a,b,k);
    myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
    %Run the optimization
    opts = struct('MaxIter',1e4,'Display','off');  %-Increase max iter for quadprog
    optinputs = {'ngrid',2*k,'symtol',tol,'opts',opts};
    fcn = @(v) adjustpdfFVAL(f0,myfi,con,bounds,'pts',v,optinputs{:});
    %Find the best inflection point locations.
    v0 = bounds(1) + (1:3)*range(bounds)/4;
    [pts fmin] = SequentialLineMin(fcn,bounds,v0);
    PTS(i,:) = pts;
    OFs(i) = fmin;
end

%Run the esitmator once more with optimal m, pts and get outputs for this function.
ix = find(OFs==min(OFs),1,'first');
m = mvals(ix);
pts = PTS(ix,:);
dist = max([m-min(data) max(data)-m])+4*hSJ;
a = m-dist;
b = m+dist;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'pts',pts,optinputs{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.m = m;
C.pts = pts;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end








AdjSyUnimodalKDE.m

function [f C] = AdjSyUnimodalKDE(x,data,h)
% [f y] = AdjSyUnimodalKDE(x,data,h) 
%
% A utility function to get density values from a symmetric and unimodal
% adjustment-curve adjusted kde in one function call.  This is intended to be used
% with the MLbandwidth function for bandwidth selection.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%
% The best point of symmetry is found by trying 20 points evenly spaced between
% prctile(data,[20 80]). To this collection is added the location of the pilot's
% highest mode. The bounds for the adjustment curve are set to be equidistant from
% this point of symmetry (as required by adjustpdf).  A tolerance of 0.001 is used
% for the symmetry constraint.  Setting the point of symmetry also sets the mode when
% it's a unimodality constraint, so no further points need to be determined.

%The pilot estimator
n = length(data);
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 
searchrange = prctile(data,[20 80]);
tst = linspace(searchrange(1),searchrange(2),200);
f0est = f0(tst,0);
pilotmode = tst(find(f0est==max(f0est),1,'first'));

%Other needed objects
hSJ = SJbandwidth(data);
nm = 20;                                                    %-Number of sym points.
mvals = [linspace(searchrange(1),searchrange(2),nm) pilotmode];     %-The symmetry points.
tol = 0.001;
con = {'symmetric','unimodal'}; 
OFs = zeros(nm+1,1);

for i = 1:nm+1
    m = mvals(i);
    %Set up the bounds, centered at m and covering the data plus some on either side.
    dist = max([m-min(data) max(data)-m])+4*hSJ;
    a = m-dist;
    b = m+dist;
    bounds = [a b];
    k = ceil(2*(b-a)/h);
    sig = (b-a)/(k-1);
    mu = linspace(a,b,k);
    myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
    %Run the optimization
    opts = struct('MaxIter',1e4,'Display','off');  %-Increase max iter for quadprog
    optinputs = {'ngrid',2*k,'opts',opts};
    [alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'m',m,'symtol',tol, ...
                                       optinputs{:});
    OFs(i) = extra.fval;
end

%Run the esitmator once more with optimal m and get outputs for this function.
m = mvals(find(OFs==min(OFs),1,'first'));
dist = max([m-min(data) max(data)-m])+4*hSJ;
a = m-dist;
b = m+dist;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(y,r) NormalGridFcn(y,r,mu,sig);
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'m',m,'symtol',tol, ...
                                   optinputs{:});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.m = m;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;


end







AdjUnimodalPenalizedKDE.m

function [f C] = AdjUnimodalPenalizedKDE(x,data,h,m,lambounds)
% [f y] = AdjUnimodalPenalizedKDE(x,data,h,m) 
%
% A utility function to get density values from the unimodal adjustment-curve
% adjusted kde with a roughness penalty, in one function call.  The bandwidth h and
% the mode location m are to be provided as inputs; the roughness penalty parameter
% is chosen automatically by cross-validation.
%
% Note that this function relies on several other functions that must be on the
% MATLAB path for it to run.
%
% x is the vector of values at which to evaluate f(x).
% data is the vector of observed data points.
% h is the bandwidth to use.
% m is the mode location.
% lambounds = bounds on the search for optimal lambda (roughness penalty)
%
% f is the vector of function values.
% C is a struct with the outputs from the call to adjustpdf.
%

%Needed objects
n = length(data);
hSJ = SJbandwidth(data);

%The pilot estimator
f0 = @(g,r) mixnormpdf(g,data,h*ones(n,1),[],r); 

%Set up the adjustment densities. Need to go well past the data on either side.
a = min(data)-6*hSJ;
b = max(data)+6*hSJ;
bounds = [a b];
k = ceil(2*(b-a)/h);
sig = (b-a)/(k-1);
mu = linspace(a,b,k);
myfi = @(x,r) NormalGridFcn(x,r,mu,sig);

%Prepare for optimizing.
opts = struct('MaxIter',1e4,'Display','off');  %-Increase max iter for quadprog
optinputs = {'ngrid',2*k,'opts',opts};
con = {'unimodal'};

%Do the leave-one-out thing and collect estimates
z = linspace(a,b,250)';     %-For computing estimates over the support
fcn = @(lam) CVscore(lam);

%Find the best mode location.
v0 = sum(lambounds)/2;
[lambda fmin] = SequentialLineMin(fcn,lambounds,v0);

%Run the esitmator once more with optimal lambda and get outputs for this function.
[alpha adj fhat extra] = adjustpdf(f0,myfi,con,bounds,'m',m,optinputs{:},'penalty',{2,false,false,lambda});
f = fhat(x,0);
C.alpha = alpha;
C.adj = adj;
C.fhat = fhat;
C.extra = extra;
C.m = m;
C.lambda = lambda;
C.myfi = myfi;
C.bounds = bounds;
C.k = k;
    
    %======SUBFUNCTION TO CALCULATE THE CV SCORE==============
    function CV = CVscore(lambda)
        term1 = 0;                  %-To keep running total of term1 in CV(lambda)
        term2 = 0;                  %-To keep running total of term2 in CV(lambda)
        [alpha adj fhat] = adjustpdf(f0,myfi,con,bounds,'m',m,optinputs{:},...
                                           'penalty',{2,false,false,lambda});
        term1 = trapz(z,fhat(z,0).^2);
        for j = 1:n
            newdata = data;
            newdata(j) = [];
            f0new = @(g,r) mixnormpdf(g,newdata,h*ones(n-1,1),[],r); 
            [alpha adj fhat extra] = adjustpdf(f0new,myfi,con,bounds,'m',m,optinputs{:},...
                                               'penalty',{2,false,false,lambda});
            term2 = term2 + fhat(data(j),0);
        end
        CV = term1 - (2/n)*term2;
        disp(['finished one CV calc. Lambda = ' num2str(lambda) '   CV = ' num2str(CV)]); pause(0.01)
    end


end







adjustSTAR2D.m

function [alpha adj fhat extra] = adjustSTAR2D(f0,fi,bounds,m,varargin)
%============= ADJUSTING A PDF ESTIMATE TO SATISFY STAR UNIMODALITY ================
% This function takes a pilot bivariate density estimator f0(x), and uses a linear
% combination of K adjustment densities fi(x) to create an adjustment curve adj(x),
% such that fhat(x) = f0(x) + adj(x) satisfies a star unimodality shape constraint.
% The optimal coefficients of the linear combination are found using quadratic
% programming, so the shape control is limited to options expressible as linear
% constraints and quadratic objectives.
%
% *** This function is copied from adjustpdf.m, with appropriate modifications***
% 
% Example Calls:
%   alpha = adjustpdf(f0,fi,bounds,m)  Returns coefficients alpha such that 
%                                 sum(fi(x,0)*alpha) is the optimal adjustment 
%                                 curve satisfying the star unimodality constraint 
%                                 over bounds(1,:) in direction 1 and bounds(2,:) in 
%                                 direction 2, with mode at m.
%   [alpha adj] = adjustpdf(...)  Also returns adj(x,r), an inline function for
%                                 calculating the adjustment, where x is ?-by-2.
%   [alpha adj fhat] = adjustpdf(...)   Also returns fhat(x,r), an inline function for
%                                 calculating the adjusted pdf.
%   [alpha adj fhat extra] = adjustment(...)    Also returns extra outputs from the
%                                 call to the quadratic programming solver.
%   [...] = adjustpdf(f0,fi,bounds,m,'Parameter',Value)  Sets optional inputs (see
%                                 below).
%
% Required Inputs:
%   f0      Handle to a function allowing the pilot density estimate and  
%           its derivatives to be calculated at some ?-by-2 x.  f0(x,r) calculates
%           the value of the rth partial derivative of f0 at the rows of x.  r = 0
%           returns the function itself, r = 1 returns the first partial, r = 2 the
%           2nd partial. The function should be able to handle x as a G-by-2 array of
%           points and return a G-by-1 vector of function values.
%   fi      A function handle, fi(x,r), where x is G-by-2, should return
%           a G-by-k matrix of values or partial derivatives. The (i,j)th element of
%           the vector is the evaluation of the ith adjustment density at x(j,:).
%   bounds  A 2-by-2 matrix giving, in rows, the lower and upper limits for the range
%           over which the constraints should be enforced.
%   m       A 2-vector giving the mode location.
%
% Optional Inputs (parameter-value pairs):
%       Parameter       Value
%       'ngrid'         If supplied, the constraints are checked at an
%                       ngrid(1)-by-ngrid(2) grid of points.  Default is [25 25].
%       'method'        Determines which optimization function is called: 'quadprog'
%                       uses matlab's optimization toolbox function, 'e04nc' uses NAG
%                       toolbox dense solver, 'e04nq' uses NAG toolbox sparse solver.
%                       The default is e04nq.
%       'opts'          Additional optimization options to add when calling quadprog.
% 
% Notes:
%   1) Quadprog minimizes 
%        (1/2)*alpha'*H*alpha + v'*alpha    (quadratic objective, we use H = D + S)
%      with constraints 
%        LB <= alpha <= UB            (bound constraints)
%        Aeq*alpha == beq             (linear equality constraints)
%        A*alpha <= b                 (linear inequality constraints)
%      The purpose of this function is to set up H, v, LB, UB, Aeq, beq, A, and b to
%      implement the specified shape-constrained optimization, and then call quadprog.
%   2) Using objective 'alphas' exclusively here, so I don't need to work out a 2D
%      trapezoidal rule for implementing an ISE objective.
%====================================================================================


%==INPUT CHECKING====================================================================
%--Parse the inputs------------------------------------------------------------------
IP = inputParser;                       %-Create instance of inputParser class.
IP.addRequired('f0', @(v) isa(v,'function_handle') );
IP.addRequired('fi', @(v) isa(v,'function_handle') || isempty(v) );
IP.addRequired('bounds', @(v) isnumeric(v) && all(size(v)==2) && all(diff(bounds')>0) );
IP.addRequired('m', @(v) isnumeric(v) && length(v)==2 );
IP.addParamValue('ngrid', [25 25], @(v) length(v)==2 && all(v>0) && all(mod(v,1)==0) );
IP.addParamValue('method', 'e04nq', @(v) ismember(v,{'quadprog','e04nc','e04nq'}) );
IP.addParamValue('opts', [], @(v) isstruct(v) );
IP.parse(f0,fi,bounds,m,varargin{:}); %-Parse and validate input arguments.
IP.FunctionName = 'adjustSTAR2D';          %-Other parser settings
%--Put the optional arguments into the function workspace----------------------------
ngrid = IP.Results.ngrid;                   %-Let G be the number of gridpoints.
method = IP.Results.method;
opts = IP.Results.opts;


%==SET UP NEEDED OBJECTS=============================================================
%--Set up g, the grid of points for constraint evaluation----------------------------
g1 = linspace(bounds(1,1),bounds(1,2),ngrid(1));
g2 = linspace(bounds(2,1),bounds(2,2),ngrid(2));
[G1 G2] = meshgrid(g1,g2);
g = [G1(:) G2(:)];
G = size(g,1);
%--Other needed things---------------------------------------------------------------
if size(m,1)>1; m = m'; end              %-Make m a row vector.
K = length(fi(sum(bounds,2)'/2,0));      %-Determine number of adj densities.

%--Calculate f0 and its 1st partial derivs at the gridpoints-------------------------
F0 = f0(g,0);                       %-G-vector, f0(g).
F01 = f0(g,1);                      %-G-vector, first partial derivative of f0.
F02 = f0(g,2);                      %-G-vector, second partial derivative of f0.


%==SET UP OBJECTIVE FUNCTION=========================================================
D = eye(K);    

%==SET UP MANDATORY CONSTRAINTS======================================================
%--Area constraint-------------------------------------------------------------------
Aeq = ones(1,K);
beq = 0;
%--Non-negativity constraint---------------------------------------------------------
A = zeros(G,K);
for i = 1:G
    A(i,:) = -fi(g(i,:),0);
end
b = F0;


%==SET UP STAR UNIMODALITY CONSTRAINT================================================
A2 = zeros(G,K);
b2 = zeros(G,1);
for i = 1:G
    gi = g(i,:);
    u = (gi-m)/norm(gi-m);      %-The unit vector for directional deriv.
    A2(i,:) = u(1)*fi(gi,1) + u(2)*fi(gi,2);
    b2(i) = -[F01(i) F02(i)]*u';
end
A = [A; A2];
b = [b; b2];

%==THESE LINES ARE REMNANTS OF PENALTY TERMS, LEAVE THEM ZEROS===
S = zeros(K);
v = zeros(K,1);
lambda = 0;


%==CALL QUADPROG TO GET THE SOLUTION AND COLLECT EXTRA OUTPUTS=======================
global H                          %-Make H global in order to use it in qphx.
switch method
    case 'quadprog'
        options = optimset('quadprog');         %-Start with defaults for quadprog.
        % options = optimset(options,'MaxIter',1e3,'Display','off');  
        options = optimset(options,'MaxIter',1e3);  %-Increase maxiter
        options = optimset(options,opts);       %-Add in user-specified changes.
        LB = -Inf*ones(K,1);                    %-Lower bounds on alphas.
        UB = Inf*ones(K,1);                     %-Upper bounds on alphas.
        H = 2*(D+lambda*S);                     %-Add objfun and penalty parts.
        H = (H+H')/2;                           %-Be doubly sure it's symmetric.
        cvec = lambda*v;                        %-coeff vec for linear part of OF.
        warning off all
        [alpha,fval,exitflag,output] = quadprog(H,cvec,A,b,Aeq,beq,LB,UB,[],...
                                                options);
        warning on all
        extra = struct('exitflag',exitflag,'output',output,'D',D,'S',S,'v',v, ...
                       'A',A,'b',b,'Aeq',Aeq,'beq',beq);
    case 'e04nc'
    %This function optimizes c'*alpha + (1/2)*alpha'*H*alpha, subject to bound
    %constraints bl <= alpha <= bu and linear constraints bl <= C*alpha <= bu.  So
    %all equality and inequality constraints have to be specified through the C
    %matrix and the bl, bu bounds.  And bl, bu need extra elements for bnds on alpha.
        [cwsav,lwsav,iwsav,rwsav,ifail] = e04wb('e04nc');
        [lwsav,iwsav,rwsav,inform] = e04ne('Problem Type = QP2',lwsav,iwsav,rwsav);
        [lwsav,iwsav,rwsav,inform] = e04ne('Feasibility Phase Iteration Limit = 5000', ...
                                           lwsav,iwsav,rwsav);
        [lwsav,iwsav,rwsav,inform] = e04ne('Optimality Phase Iteration Limit = 5000', ...
                                           lwsav,iwsav,rwsav);
        minus_inf = -1e21;                %-A number smaller than NAG infinite bound.
        plus_inf = 1e21;
        C = [Aeq; A];                     %-Combine equality & inequality constr.
        ncon = size(C,1);                 %-Number of constraints.
        bl = minus_inf*ones(K+ncon,1);    %-Initialize lower bounds.
        bl(K+1:K+length(beq)) = beq;      %-Set lower bounds for equality constrts.
        bu = [plus_inf*ones(K,1); beq; b];%-Set all upper bounds.
        istate = zeros(K+ncon,1,'int32'); %-Init state of cons (unnec for cold start)
        kx = zeros(K,1,'int32');          %-Not needed for QP2 type prob.
        alpha0 = zeros(K,1);              %-Initial guess, all zeros.
        H = 2*(D+lambda*S);               %-Matrix in the obj fun.
        H = (H+H')/2;                     %-Be doubly sure it's symmetric.
        cvec = lambda*v;                        %-coeff vec for linear part of OF.
        data = zeros(K,1);                %-Not used in prob type QP2.
        [istateOut,kxOut,alpha,HOut,dataOut,iter,fval,clamda, ...
         lwsavOut,iwsavOut,rwsavOut,ifail] = ...
         e04nc(C,bl,bu,cvec,istate,kx,alpha0,H,data,lwsav,iwsav,rwsav);
        extra = struct('D',D,'S',S,'v',v,'A',A,'b',b,'Aeq',Aeq,'beq',beq, ...
                       'istateOut',istateOut,'kxOut',kxOut,'HOut',HOut, ...
                       'dataOut',dataOut,'iter',iter,'clamd',clamda, ...
                       'lwsavOut',lwsavOut,'iwsavOut',iwsavOut, ...
                       'rwsavOut',rwsavOut,'exitflag',ifail);
    case 'e04nq'
    %This function optimizes q + c'*alpha + (1/2)*alpha'*H*alpha, subject to bound
    %constraints bl <= alpha <= bu and linear constraints bl <= C*alpha <= bu.
    %Constraints specified in a way similar to e04nc, but the matrix C is sparse.
        [cw,iw,rw,ifail] = e04np();        
        [cw, iw, rw, ifail] = e04ns('Elastic Weight = 1000', cw, iw, rw);
        [cw, iw, rw, ifail] = e04ns('Iterations Limit = 50000', cw, iw, rw);
        minus_inf = -1e21;                %-A number smaller than NAG infinite bound.
        plus_inf = 1e21;
        cvec = lambda*v;                  %-coeff vec for linear part of OF.
        C = [cvec' ;Aeq; A];              %-Combine "objective row" and all constrts.
        C(abs(C)<eps) = 0;                     %-Drop tiny numbers to be sparse.
        ncon = size(C,1);                 %-Number of constraints.
        bl = minus_inf*ones(K+ncon,1);    %-Initialize lower bounds.
        bl(K+2:K+length(beq)+1) = beq;      %-Set lower bounds for equality constrts.
        bu = [plus_inf*ones(K+1,1); beq; b];%-Set all upper bounds.
        H = 2*(D+lambda*S);               %-Matrix in the obj fun.
        H = (H+H')/2;                     %-Be doubly sure it's symmetric.
        H(abs(H)<eps) = 0;                %-Drop tiny numbers to be sparse.
        mm = int32(ncon);                 %-Number of constraints.
        nn = int32(K);                    %-Dimension of alpha.
        lenc = int32(0);                  %-Don't put cvec into the input list, since
        cvec = 0;                         % we've added it to the C matrix using iobj.
        ncolh = int32(K);                 %-Num leading nonzero cols of H.
        iobj = int32(1);                  %-Location of objective row in C.
        objadd = 0;                       %-Constant to add to objfun.
        [rr cc vv] = find(sparse(C));     %-Get nonzero elements and their locations.
        acol = vv;
        inda = int32(rr);
        %-loca holds locations where acol and inda switch to the next column of C.
        loca = int32([1 1+full(cumsum(sum(spones(C),1)))]');
        helast = int32([zeros(nn+2,1); 3*ones(mm-2,1)]);    %-Make inequalities elastic.
        hs = zeros(nn+mm,1,'int32');      %-related to initialization procedures.
        xx = zeros(nn+mm,1);              %-Initial values for alpha and slacks.
        ns = int32(0);                    %-Not used if 1st argument is 'C'.
        [hs,xx,Pi,rc,ns,ninf,sinf,fval,user,cw,iw,rw,ifail] = e04nq('C','qphx', ...
         mm,nn,lenc,ncolh,iobj,objadd,'        ',acol,inda,loca,bl,bu, ...
         cvec,{''},helast,hs,xx,ns,cw,iw,rw);
        alpha = xx(1:K);
        extra = struct('D',D,'S',S,'v',v,'A',A,'b',b,'Aeq',Aeq,'beq',beq, ...
                       'hs',hs,'xx',xx,'Pi',Pi,'rc',rc,'ns',ns,'ninf',ninf, ...
                       'sinf',sinf,'user',user,'cw',{cw},'iw',iw, ...
                       'rw',rw,'exitflag',ifail);
end


%==PREPARE THE REST OF THE OUTPUTS===================================================
adj = @(x,r) fi(x,r)*alpha;
fhat = @(x,r) f0(x,r) + adj(x,r);
extra.fval = fval;
extra.fi = fi;

end










TrianGridFcn.m

function value = TrianGridFcn(x,r,mu)
% TrianGridFcn(x,r,mu)
%
% Returns a length(x) by length(x)-2 matrix of values of the rth derivative of
% triangular distributions. value(i,j) is the rth derivative of a triangular
% distribution with endpoints at mu(j-1) and mu(j+1), and peak at mu(j), for j = 2,
% ... length(mu)-1.  
%   x is a vector of points at which to evaluate the triangular densities
%   r is one of (0, 1, 2, 3).  Only get meaningful output for r = 0 or r = 1.
%   mu is a vector of triangle vertex locations.
%
% NOTES:
% * We include the r = 2, r = 3 options only for compatibility with other functions.
% This function will return value = 0 everywhere for these values of r.
% * For compatibility with other functions, the first derivative of the triangular
% density is returned as 0 at points of non-differentiability. 

%---Get dimensions for output (n by m)---
n = length(x);
m = length(mu)-2;

%---Ensure vectors are the column vectors---
if size(x,1)==1; x = x'; end
if size(mu,1)==1; mu = mu'; end

%---Triangle vertex locations and peak heights---
% (all of these are m-vectors)
ll = mu(1:end-2);        %-left endpoints.
mm = mu(2:end-1);        %-middle vertex locations.
rr = mu(3:end);          %-right endpoints.
fm = 2./(rr-ll);          %-mode heights for the m densities.

%---Create matrix versions of things---
% (all of these are n-by-m matrices)
X = x*ones(1,m);
L = ones(n,1)*ll';
M = ones(n,1)*mm';
R = ones(n,1)*rr';
FM = ones(n,1)*fm';

%---Calculate the output---
value = zeros(n,m);
Lix = X>L & X<M;        %-indicator of x being in the left half of a triangle.
Rix = X>M & X<R;        %-indicator of x being in the right half of a triangle.
switch r
    case 0
        value(Lix) = (X(Lix)-L(Lix)).*FM(Lix)./(M(Lix)-L(Lix));
        value(Rix) = (R(Rix)-X(Rix)).*FM(Rix)./(R(Rix)-M(Rix));
    case 1
        value(Lix) = FM(Lix)./(M(Lix)-L(Lix));
        value(Rix) = -FM(Rix)./(R(Rix)-M(Rix));
    case 2
        value = zeros(n,m);
    case 3
        value = zeros(n,m);
end









 






PLinDens.m

function f = PLinDens(x,r,x0,f0)
% PLinDens(x,r,x0,f0)
%
% Calculates the rth derivative of a piecewise linear density defined by points x0
% and f0. 
%   x is a vector of points at which to fetch the density values.
%   r is the derivative to use (0, 1, 2, or 3) (note 2 or 3 just return zero)
%   x0 is a vector of x-coords for the vertices of the linear pieces.
%   f0 is a vector of function values corresponding to x0.
%
%   f is a vector of function values at the x coordinates. Return zero for any
%   points outside the range of x0.

%---Ensure vectors are the column vectors---
if size(x,1)==1; x = x'; end
if size(x0,1)==1; x0 = x0'; end
if size(f0,1)==1; f0 = f0'; end

%---Dimensions of things---
n = length(x0);
m = length(x);

%---vectorized code for finding the nearest x0 value on left and right---
%***TODO: figure out best handling of equality or inequality in determining IX, to
%handle all special cases (e.g. where x is at an endpoint or exactly equals some
%x0)***
X = x*ones(1,n-1);                  %-each col is x.
X0L = ones(m,1)*x0(1:end-1)';         %-each row is x0(1:end-1).
X0R = ones(m,1)*x0(2:end)';           %-each row is x0(2:end).
F0L = ones(m,1)*f0(1:end-1)';         %-each row is f0(1:end-1).
F0R = ones(m,1)*f0(2:end)';           %-each row is f0(2:end).
IX = X>=X0L & X<X0R;                   %-should only have one true per row.
xL = X0L(IX);                           %-nearest x0 values on left.
xR = X0R(IX);                           %-nearest x0 values on right.
fL = F0L(IX);
fR = F0R(IX);
% xL = sum(X0L(IX),2);                  %-nearest x0 values on left.
% xR = sum(X0R(IX),2);                  %-nearest x0 values on right.
% fL = sum(F0L(IX),2);
% fR = sum(F0R(IX),2);

switch r
    case 0
        f = fL + (fR-fL).*(x-xL)./(xR-xL);
    case 1
        f = (fR-fL)./(xR-xL);
    case 2
        f = zeros(m,1);
    case 3
        f = zeros(m,1);
end








mixnormpdf.m

function fx = mixnormpdf(x,mu,sig,p,r)
%================== Normal Mixture PDF and its Derivatives =====================
%
%Example Calls:
%
%   fx = mixnormpdf(x,mu,sig) calculates the value of a normal mixture pdf at
%   x.  x may be a vector.  mu is a vector of component means; sig is a vector
%   of component standard deviations.  Components are mixed in equal proportion.
%
%   fx = mixnormpdf(x,mu,sig,p) uses proportions as specified in vector p.
%
%   fx = mixnormpdf(x,mu,sig,p,r) returns the rth derivative of the pdf.  Supply
%   p = [] to use the default equal weighting.  r must be 0, 1, 2, or 3, with r==0 
%   returning the usual pdf.
%
%Notes:
%   -mu, sig, and p must be the same length.  Length(mu) determines the number
%    of components. If a scalar sig is provided, it is expanded to match mu.
%   -if sum(p) <> 1, p is scaled such that sum(p) = 1, with a warning.

%KEYWORDS: [MarkWolters] [Function] [Density] [PDF]
%
%===============================================================================

%--Process inputs and do checking-----
if ~all([isvector(x) isvector(mu) isvector(sig)])
    error('Arguments must be scalar or vector')
end
n = length(x);
ncomp = length(mu);
%set default p if no p given.
if nargin < 4 || isempty(p)
    p = 1/ncomp * ones(1,ncomp);
else
    if ~isvector(p)
        error('Arguments must be scalar or vector')
    end
end
%Set default r = 0 if it hasn't been provided.
if nargin < 5
    r = 0;
end
%ensure x is a col vector and mu/sig/p are row vectors.
if size(mu,1)>1,    mu = mu';   end
if isscalar(sig)
    sig = sig*ones(1,ncomp);
elseif size(sig,1)>1
    sig = sig'; 
end
if size(p,1)>1,     p = p';     end
if size(x,2)>1,     x = x';     end
%ensure parameters are consistent length.
if ~all([length(mu) length(sig) length(p)] == ncomp)
    error('Mixture parameters have incompatibile dimensions')
end
%ensure p is a probability vector.  Avoid false warnings due to round off.
if abs(sum(p) - 1) > 1e-10
    p = p./sum(p);
    warning('Specified mixture proportions were scaled to sum to 1')
end
%ensure sigma positive.
if ~all(sig>0)
    error('Elements of standard deviation vector must be positive')
end
%--Calculate the function values-----
%Do this by creating matrix versions of mu, sig, p so all the component pdfs can
%be calculated at once.
nvec = ones(n,1);
ncompvec = ones(1,ncomp);
X = x*ncompvec;
MU = nvec*mu;
SIG = nvec*sig;
P = nvec*p;

switch r
    case 0
        fx = sum(P .* 1./(sqrt(2*pi)*SIG).*exp(-(X-MU).^2./(2*SIG.^2)), 2);
    case 1
        fx = sum(-(X-MU).*P./(sqrt(2*pi)*SIG.^3).*exp(-((X-MU).^2)./(2*SIG.^2)), 2);
    case 2
        fx = sum(P.*((X-MU).^2-SIG.^2)./(sqrt(2*pi)*SIG.^5) ...
                 .*exp(-((X-MU).^2)./(2*SIG.^2)), 2);
    case 3
        fx = sum(P.*(3*SIG.^2.*(X-MU) - (X-MU).^3)./(sqrt(2*pi)*SIG.^7) ...
                 .* exp(-((X-MU).^2)./(2*SIG.^2)), 2);
    otherwise
        error('Derivative order must be 0, 1, 2, or 3')
end

































BVNormalGridFcn.m

function value = BVNormalGridFcn(x,r,mu,sd)
% BVNormalGridFcn(x,r,mu,SIG) calculates function values for a set of bivariate
% normal densities that have different locations but common covariance matrix SIG. At
% the moment it only deals with diagonal covariance matrices (independent variates).
%
% When x is a q-by-2 matrix of values, returns a q-by-k matrix of function values.
% When r==0, value(i,j) is the height of a bivariate N(mu(j,:),diag(sd.^2)) density
% at x(i,:).  If r==1, then the first partial derivatives of the densities are
% returned instead; if r==2, then the second partial derivatives are returned.
%   x is a q-by-2 matrix of points at which to evaluate the normal distributions
%   r is one of {0,1,2}
%   mu is a k-by-2 matrix of means/locations
%   sd is either a 2-vector with common sd's of the components, or a k-by-2 matrix.
%
% Because we are considering only uncorrelated bivariate normals, we can set up this
% function using calls to the univariate counterpart function, NormalGridFcn.

%---Get dimensions for output (q by k), and set up SD---
k = size(mu,1);
if isvector(sd)
    SD = [sd(1)*ones(k,1) sd(2)*ones(k,1)];
else
    SD = sd;
end

%---Calculate appropriate quantities, depending on r---    
switch r
    case 0
        %---Get needed quantities from NormalGridFcn---
        V1 = NormalGridFcn(x(:,1),0,mu(:,1),SD(:,1));
        V2 = NormalGridFcn(x(:,2),0,mu(:,2),SD(:,2));
        value = V1.*V2;
    case 1
        V1prime = NormalGridFcn(x(:,1),1,mu(:,1),SD(:,1));
        V2 = NormalGridFcn(x(:,2),0,mu(:,2),SD(:,2));
        value = V1prime.*V2;
    case 2
        V1 = NormalGridFcn(x(:,1),0,mu(:,1),SD(:,1));
        V2prime = NormalGridFcn(x(:,2),1,mu(:,2),SD(:,2));
        value = V1.*V2prime;
end


end






MLbandwidth.m

function [hbest extra] = MLbandwidth(x,estimator,varargin)
%===== FIND OPTIMAL BANDWIDTH OF GAUSSIAN KDE =======================================
%
% hbest = MLbandwidth(x,estimator)    
%    Returns the optimal bandwidth for the gaussian KDE of data x, using likelihood
%    cross-validation.  The optimum is found using golden-section search on [0.01hos
%    1.5hos], where hos is the oversmoothed bandwidth (Wand and Jones, p. 61). The
%    input estimator is a function handle to a (possibly data-sharpened) kernel
%    density estimator.  It must have the form estimator(y,x,h) where y is a vector 
%    of values at which to evaluate the density, x is the data on which the KDE is 
%    based, and h is a scalar bandwidth.
%
% hbest = MLbandwidth(x,estimator,'hosrange',hosrange)
%    Instead of using [0.01 1.5]*hos for search limits, it uses hosrange*hos.
%    hosrange is a 2-vector like [lower_limit upper_limit].
%
% hbest = MLbandwidth(x,estimator,'nbw',nbw)
%    Uses a grid search on [0.01hos 1.5hos] (or hosrange*hos, if specified) with nbw
%    steps, rather than the golden-section search.
%
% hbest = MLbandwidth(x,estimator,'method',meth)
%    Where meth is either 'LCV' or 'ML' determines which method is used.  If meth is
%    'LCV', likelihood cross-validation (the default) is used.  If meth is 'ML', then
%    the likelihood of the data under the estimator is used.  Option 'ML' only makes
%    sense when the estimator is a shape-constrained one.
%
% [hbest extra] = MLbandwidth(x,estimator,'nbw',nbw)
%    Also returns an nbw-by-2 matrix with first column = h values, second column =
%    -log likelihood values for the search.  Only valid if using 'nbw' option and a
%    grid search.
%
%====================================================================================

%--Parse the inputs------------------------------------------------------------------
IP = inputParser;                       %-Create instance of inputParser class.
                                        %-Add args/validator fcns to the schema.
IP.addRequired('x', @(v) isvector(v));
IP.addRequired('estimator', @(v) strcmp(class(v),'function_handle'));
IP.addParamValue('hosrange', [0.01 1.5], @(v) isnumeric(v) && length(v)==2 );
IP.addParamValue('nbw', [], @(v) isscalar(v) && mod(v,1)==0 );
IP.addParamValue('method','LCV', @(v) ismember(v,{'LCV','ML'}));
IP.parse(x,estimator,varargin{:});      %-Parse and validate input arguments.
IP.FunctionName = 'MLbandwidth';          %-Other parser settings
%%%Put the optional arguments into the function workspace
hosrange = IP.Results.hosrange;
nbw = IP.Results.nbw;
method = IP.Results.method;
%%%
if isempty(nbw) && nargout==2
    error('2nd output argument is only allowed when using grid search.')
end

%--Create other needed objects-------------------------------------------------------
n = length(x);
s = std(x);
RK = quad('normpdf(x).^2',-5,5);
hos = s*( 243*RK / (35*1*n) )^(1/5);    %-The oversmoothed bandwidth.

%--Carry out the desired method of optimization--------------------------------------
if isempty(nbw)
    %***Case 1: use Golden Section search********
    tol = 0.01;                         %-Tolerance for GS search.
    bounds = hosrange*hos;
    hbest = GSmin1D(@goodness,bounds,tol);
else
    %***Case 2: use grid search******************
    hfactors = linspace(hosrange(1),hosrange(2),nbw)';   %-To multiply by hos.
    extra = zeros(nbw,2);               %-For holding grid search results.
    for i = 1:nbw
        h = hfactors(i)*hos;
        extra(i,1) = h;
        extra(i,2) = goodness(h);
        disp([i extra(i,:)]);    %-Send info to the command line.
    end
    loc = find(extra(:,2)==min(extra(:,2)),1,'first');
    hbest = extra(loc,1);
end

% %-Find all local mins and take largest.
% tst = find(diff(LSCV(1:nbw-1))<0 & diff(LSCV(2:nbw))>0 ) + 1;
% hcv = hos*hfactors(tst(end));
    

    %--Subfunction to calculate the quality of the estimator at a certain h----------
    %This function either calculates the negative log likelihood of the estimate (for
    %ML method) or the average leave-one-out -log likelihood (for the LCV method).
    %Better h's give smaller values of goodness(h).
    function val = goodness(h)
        switch method
            case 'ML'
                val = -sum(log(estimator(x,x,h)));
            case 'LCV'
                val = 0;
                for j = 1:n
                    v = x;
                    v(j) = [];
                    val = val - log(estimator(x(j),v,h));
                end
        end
    end



end








adjustpdfFVAL.m

function val = adjustpdfFVAL(f0,fi,con,bounds,varargin)
%This is a wrapper to call adjustpdf() and return only the objective function value.
%Useful for running adjustpdf inside an optimizer.
optargs = varargin;
[~, ~ , ~, extra] = adjustpdf(f0,fi,con,bounds,optargs{:});
val = extra.fval;

end








NormalGridFcn.m

function value = NormalGridFcn(x,r,mu,sd)
% NormalGridFcn(x,r,mu,SIG)
%
% Returns a matrix of values of the rth derivative of the normal pdf.  value(i,j) is
% the rth derivative of N(mu(j),sd(j)) at x(i).  If sd is scalar then it is
% expanded to length(mu)
%   x is a vector of points at which to evaluate the normal distributions
%   r is one of {0,1,2,3}
%   mu is a vector of means/locations
%   sd is a vector of standard deviations (bandwidths)

%---Get dimensions for output (n by m)---
n = length(x);
m = length(mu);

%---Ensure vectors are the column vectors---
if size(x,1)==1; x = x'; end
if size(mu,1)==1; mu = mu'; end
[rows cols] = size(sd);
if rows==1 && cols==1
    sd = sd*ones(m,1);
elseif rows==1
    sd = sd';
end

%---Create matrix versions of x and mu---
X = x*ones(1,m);
MU = ones(n,1)*mu';
SIG = repmat(sd',[n 1]);

%---Calculate the output---
switch r
    case 0
        value = 1./(sqrt(2*pi)*SIG).*exp(-(X-MU).^2./(2*SIG.^2));
    case 1
        value = -(X-MU)./(sqrt(2*pi)*SIG.^3).*exp(-((X-MU).^2)./(2*SIG.^2));
    case 2
        value = ((X-MU).^2-SIG.^2)./(sqrt(2*pi)*SIG.^5) ...
            .*exp(-((X-MU).^2)./(2*SIG.^2));
    case 3
        value = (3*SIG.^2.*(X-MU) - (X-MU).^3)./(sqrt(2*pi)*SIG.^7) ...
            .* exp(-((X-MU).^2)./(2*SIG.^2));
end

end







FindHeights2D.m

function fcrit = FindHeights2D(F,G1,G2,p)
% === FIND HEIGHTS OF CRITICAL LEVEL CURVES FOR 2D PDF ==============================
% fcrit = FindHeights2D(F,G1,G2,p).  For a 2D probability density with function 
% values F over grid points G1, G2 (F, G1, G2 are as used for plotting contour
% functions), fcrit(i) is the function values that gives a level curve enclosing
% probability mass p(i).  That is, Pr(X in A(fcrit(i))) = p(i), where A(fcrit(i)) is
% the set with f(x)>=fcrit(i).
%
% NOTE: it is assumed that the density is zero outside the range defined by G1, G2.
% If the sum of F(:)*dx*dy does not equal 1, it is rescaled to be 1.  If that sum is
% less than 0.95, a warning is thrown (probably the grid is too coarse).

[ngrid1 ngrid2] = size(G1);
dx = range(G1(1,:))/(ngrid1-1);
dy = range(G2(:,1))/(ngrid2-1);
a = dx*dy;
FF = F(:);
Total = sum(FF)*a;

if Total < 0.95
    warning('The estimated area under F is less than 0.95. Change the range or number of grid points.')
end

coverage = @(f) sum(FF(FF>=f))*a/Total;
fcrit = zeros(length(p),1);
frng = [0 max(FF)];
for i = 1:length(p)
    fcn = @(f) (coverage(f) - p(i)).^2;
    fcrit(i) = fminbnd(fcn,frng(1),frng(2));  
end


end








SJbandwidth.m

function hout = SJbandwidth(x)
% hout = SJbandwidth(x)
%
% Sheather and Jones(1991) bandwidth selection for kernel density estimation.
%
% Reference: Wand and Jones (1995) pp.72-73, see also appendix C for calculation helps
% with normal densities.

%Note, this function was originally based on a function bandwidth_SJ, written by
%Taesam Lee, that was downloaded from the MATLAB file exchange.  But it has been 
%changed the point that it doesn't resemble the original any more.  Most
%importantly:
% - using only the normal case, removed 2nd argument.
% - replaced symbolic computation with numeric approximation (it is faster this way).

%coefficients of Hermite polynomials up to H8.  Hj(x) = H(j,:)*x.^(0:8)
H = [[   1    0    0    0    0    0    0    0    0];
     [   0    1    0    0    0    0    0    0    0];
     [  -1    0    1    0    0    0    0    0    0];
     [   0   -3    0    1    0    0    0    0    0];
     [   3    0   -6    0    1    0    0    0    0];
     [   0   15    0  -10    0    1    0    0    0];
     [ -15    0   45    0  -15    0    1    0    0];
     [   0 -105    0  105    0  -21    0    1    0];
     [ 105    0 -420    0  210    0  -28    0    1]];    

 
%fcn to calc the Hermite polynomial (vectorized across x)
function val = HP(y,r)
    val = zeros(size(y));
    for j = 1:length(val)
        val(j) = H(r+1,:)*y(j).^(0:8)';
    end
end

%fcn to get rth derivatives of std normal distributions.
dNr = @(y,r) (-1)^r*HP(y,r).*normpdf(y);

%Estimate sigma
sighat = std(x);

%Get required derivatives of fk at zero.  See Appendix C for fmlas.
fk_der4_0 = dNr(0,4);
fk_der6_0 = dNr(0,6);

% RK = quad('normpdf(x).^2',-5,5); 
RK = 0.28209;
mu2 = 1;                                %-2nd moment of normal kernel.

n=length(x);

%STEP 1
Psi8_NS=105/(32*pi^(1/2)*sighat^9);

%STEP 2
g1 = (-2*fk_der6_0/(mu2*Psi8_NS*n))^(1/9);
Psi6 = 0;
for i = 1:n
    Psi6 = Psi6 + (1/n^2)*sum(dNr((x-x(i))/g1,6))/g1^7;
end

%STEP 3
g2 = (-2*fk_der4_0/(mu2*Psi6*n))^(1/7);
Psi4 = 0;
for i = 1:n
    Psi4 = Psi4 + (1/n^2)*sum(dNr((x-x(i))/g2,4))/g2^5;
end

%STEP 4
hout=(RK/(mu2^2*Psi4*n))^(1/5);


end






GSmin1D.m

function [minimizer minimum] = GSmin1D(fcn,bounds,varargin)
%  [minimizer minimum] = GSmin1D(fcn,bounds,varargin)
%
% Function to find the minimum of a function of one variable, using the Golden
% Section Search method.  This method is a direct method--it doesn't use
% derivative information.
% Required Arguments:
%  fcn--a function handle indicating the function to be minimized.
%  bounds--a 2-vector indicating the interval over which to search.
% Optional Arguments:
%  tol--a value for the tolerance on the solution (default 1E-6)
% Output:
%  minimizer--the value of x that minimizes fcn(x).
%  minimum--the value of fcn at the minimum.

nopargs = length(varargin);             %-Set up the tolerance based on the
if nopargs == 0                         % optional argument.
    tol = 1e-6;
elseif nopargs == 1
    tol = varargin{1};
else
    error('Too many arguments')
end

g = (-1+sqrt(5))/2;                     %-Compute the golden ratio constant.

LB = min(bounds);                       %-Set up starting interval.
UB = max(bounds);

a = LB+(1-g)*(UB-LB);                   %-Choose initial values for the 2 
b = LB+g*(UB-LB);                       % intermediate points.
                                        
                                        %-Loop through golden section iterations
while UB-LB > tol                       % until error is sufficiently small.
    
    if fcn(a) <= fcn(b)                 %-Shrink the interval by replacing 
        UB = b;                         % the upper or lower bound; then 
        b = a;                          % calculate the new interior point.
        a = LB+(1-g)*(UB-LB);
    else
        LB = a;
        a = b;
        b = LB+g*(UB-LB);
    end
end

minimizer = (UB+LB)/2;                  %-Output results.
minimum = fcn(minimizer);

end






mixnormrnd.m

function x = mixnormrnd(mu,sig,p,v)
%================ Random Variates from a Normal Mixture ========================
%
%Example Calls:
%
%   x = mixnormrnd(mu,sig) returns a random value from a normal mixture pdf. mu
%   is a vector of component means; sig is a vector of component standard
%   deviations.  Components are mixed in equal proportion.
%
%   x = mixnormrnd(mu,sig,p) uses proportions as specified in vector p.
%   
%   x = mixnormrnd(mu,sig,p,v) where v is a scalar, returns a v-length column
%   vector of random variates.  If v is a 2-vector like [r c], an r-by-c matrix
%   of variates is returned.
%
%   x = mixnormrnd(mu,sig,[],v) uses the default (uniform) mixture weights.
%
%Notes:
%   -mu, sig, and p must be the same length.  Length(mu) determines the number
%    of components.
%   -if sum(p) <> 1, p is scaled such that sum(p) = 1, with a warning.

%KEYWORDS: [MarkWolters] [Function] [RandomVariables]
%
%===============================================================================

%--Process inputs and do checking-----
if ~( isvector(mu) && isvector(sig) )
    error('Arguments must be scalar or vector')
end
ncomp = length(mu);
%If v not given, return a single value.  If v given, set parameters accordingly.
if nargin < 4
    n = 1;      %-Total variates needed.
    r = 1;      %-Rows of output matrix.
    c = 1;      %-Cols of output matrix.
else
    if isvector(v) && length(v)<=2
        if length(v)==2
            r = v(1);
            c = v(2);
            n = r*c;
        else
            n = v;
            r = v;
            c = 1;
        end        
    else
        error('Output dimensions incorrectly specified')
    end        
end
%if p not given or [], make it uniform.  If given, do checking and ensure p is a
%probability vector.
if nargin<3 || isempty(p)
    p = 1/ncomp * ones(ncomp,1);
else
    if ~isvector(p)
        error('Arguments must be scalar or vector')
    end
    if abs(sum(p)-1) > 1e-10
        p = p./sum(p);
        warning('Specified mixture proportions were scaled to sum to 1')
    end
end
%ensure all parameters are column vectors.
if size(mu,2)>1,    mu = mu';   end
if size(sig,2)>1,   sig = sig'; end
if size(p,2)>1,     p = p';     end
%ensure parameters are consistent length.
if ~all([length(mu) length(sig) length(p)] == ncomp)
    error('Mixture parameters have incompatibile dimensions')
end
%ensure sigma positive.
if ~all(sig>0)
    error('Elements of standard deviation vector must be positive')
end

%--Generate the variates-----
%Do this by creating 3-dim arrays so that we can get all the component pdfs with
%a single call to normpdf; then get the mixture by weighted sum across one
%dimension.
MU = repmat(mu,[1 1 n]);
SIG = repmat(sig,[1 1 n]);
X = normrnd(MU,SIG);

choose = randsample(ncomp,n,true,p);
choose = repmat(choose',[1 1 ncomp]);
choose = permute(choose,[3 1 2]);

template = repmat((1:ncomp)',[1 1 n]);

chosen = choose==template;

x = sum(X.*chosen,1);
x = squeeze(x);
x = reshape(x,[r c]);


end






qphx.m

function [hx user] = qphx(ncolh,x,nstate,user)

global H
hx = H*x;

end






heartdisease.mat

@:[1x71856  uint8 array]






windspeed.mat

@:[1x4856  uint8 array]
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Introduction


The general form of a quadratic program is as follows. Minimize the quadratic objective


function


aTHa + vT a, (1)


subject to linear equality and inequality constraints


Aa ≤ b (2)


Aeqa = beq. (3)


Here a is the k-vector of adjustment coefficients in the estimator f̂a(x) = f̂ ◦(x) + aT ψ(x).


Recall that ψ(x) = [ψ1(x) ∙ ∙ ∙ ψk(x)]T is the vector collecting the values of all adjustment


densities at x. The other quantities H, v, A, b, Aeq, and beq are appropriately-sized matrices


and vectors of constants that depend on the pilot estimator, the chosen constraints and the


way Ψ(x) is defined. This appendix demonstrates how to determine these quantities for


three instances:


1. A problem with symmetry and unimodality constraints.


2. The case where a penalty is added to the objective function to control the roughness


of the final estimate.


3. The bivariate star unimodality case.


The other constraints listed in the accompanying article can be set up in a manner similar


to these.


A Symmetric and Unimodal Estimator


We will consider how to construct the objective function, the equality constraints, and the


inequality constraints. The system of inequalities (2) must include three shape restrictions:
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non-negativity, unimodality, and symmetry. So the matrix A and vector b are each parti-


tioned into three parts,


A =












A1


A2


A3












and b =












b1


b2


b3












, (4)


with each submatrix/subvector handling one constraint.


The Objective Function


Two possible objectives were mentioned in the article accompanying this document: the L2


objective aT a, and the ISE objective
∫∞
−∞ aT ψ(x)ψ(x)T a dx. The L2 objective leads to a


simple form of (1):


L2 Objective


Minimize aTHa + vT a,


where H = Ik, v = 0, and Ik is the k × k identity matrix.


The ISE objective can be approximated using the trapezoidal rule with the function evalu-


ated at the constraint-checking points g = [g1 . . . gG]T , yielding


ISE(a) ≈
gG − g1


2(G − 1)


[


aT


(


D1 + DG + 2
G−1∑


l=2


Dl


)


a


]


∝ aTDa, (5)


where Dl = ψ(gl)ψ(gl)
T is a k × k matrix. Thus the ISE objective may be expressed as


follows.


ISE Objective


Minimize aTHa + vT a,


where H = D as defined in (5), and v = 0.
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The form of the ISE objective allows us to see why the two objectives give such similar


results when the {ψi} and g are chosen by the default method described in the main article.


With the ISE objective, the matrix H is a sum of G matrices of the form Dl = ψ(gl)ψ(gl)
T ,


and the (i, j)th element of Dl is ψi(gl)ψj(gl). This product will only be non-negligible if ψi


and ψj are near each other; consequently Dl (and H) will take large values only on the main


diagonal and the first few sub-and super-diagonals, regardless of k. When k is sufficiently


large, H behaves for the purposes of optimization much like an identity matrix, and the two


objectives are nearly equivalent.


Constraints to Ensure the Estimate is a Density


The constraint that the density estimate integrate to one leads to a restriction that the ai


must sum to zero.


Unit area restriction


Require Aeqa = beq, where Aeq = 1T
k , beq = 0, and 1k is a k-vector of ones.


The non-negativity constraint is enforced at the points in g and results in a system of G


inequalities. At the point gl, the inequality is f̂ ◦(gl) + ψ(gl)
T a ≥ 0, and this leads to the


following system.


Non-negativity constraint


Require A1a ≤ b1, where


A1
G×k


= −












ψ(g1)
T


...


ψ(gG)T












and b1 =












f̂ ◦(g1)


...


f̂ ◦(gG)












.
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Shape Constraints


The first shape constraint is unimodality with mode m (which is taken as known and fixed).


Considering the constraint-checking points, we require the first derivative to satisfy


f̂ ◦′(gl) + ψ′(gl)
T a









≥ 0, gl ≤ m


≤ 0, gl ≥ m
, (6)


or, equivalently,


−ψ′(gl)
T a ≤ f̂ ◦′(gl) when gl ≤ m


ψ′(gl)
T a ≤ −f̂ ◦′(gl) when gl ≥ m.


The two inequalities above differ only in their signs. The signum function can be used to


write the system of constraints in a unified way.


Unimodality constraint


Require A2a ≤ b2, where


A2
G×k


= −












sgn(g1 − m)ψ′(g1)
T


...


sgn(gG − m)ψ′(gG)T












and b2 =












sgn(m − g1)f̂
◦′(g1)


...


sgn(m − gG)f̂ ◦′(gG)












.


Moving on to the symmetry constraint, note first that if the estimate is unimodal with mode


m, then m must be its point of symmetry as well. For simplicity, let m = (g1 + gG)/2, so


the estimate is to be symmetric around the midpoint of the constraint-checking grid. The


constraint is to be enforced at r pairs of points equidistant from m. If G is odd, m = g(G−1)/2


and we will have r = (G − 1)/2; if G is even, r = G/2. Strict symmetry constraints are


equalities, however there may be numerical difficulties enforcing them as such. For example,
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if the grid of ψi densities is not aligned to g, or if k is too small, it may not be possible to get


exact reflection around m. So it is more effective to enforce near-symmetry through inequality


constraints with a tolerance, ε. For l = 1, . . . , r, the constraint is |f̂a(gl) − f̂a(gG−l+1)| ≤ ε,


or


f̂a(gl) − f̂a(gG−l+1) ≥ −ε


f̂a(gl) − f̂a(gG−l+1) ≤ ε.


So each of r symmetry checks produces two inequalities that must be satisfied. Writing them


in terms of the adjustment densities and their coefficients a produces


(ψ(gl) − ψ(gG−l+1))
T a ≤ f̂ ◦(gG−l+1) − f̂ ◦(gl) + ε


(ψ(gG−l+1) − ψ(gl))
T a ≤ f̂ ◦(gl) − f̂ ◦(gG−l+1) + ε,


which may be combined in matrix-vector form as shown below.


Symmetry constraint


Require A3a ≤ b3, where A3
2r×k


=









M


−M






, b3 =









w + ε1


−w + ε1






, and


M
r×k


=


















(ψ(g1) − ψ(gG))T


...


(ψ(gl) − ψ(gG−l+1))
T


...


(ψ(gr) − ψ(gG−r+1))
T


















and w =


















f̂ ◦(gG) − f̂ ◦(g1)


...


f̂ ◦(gG−l+1) − f̂ ◦(gl)


...


f̂ ◦(gG−r+1) − f̂ ◦(gr)


















.
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Adding a roughness penalty to the objective


Consider a slightly more general form of the objective function (1),


aT (H + λS)a + vT a, (7)


where the matrix of the quadratic form has been expressed as a sum of two parts. The matrix


H is unchanged from the preceding calculations: it measures the L2 or ISE distance between


the estimate and the pilot density. The matrix S measures the roughness of the estimate,


in a manner to be described presently. The nonnegative scalar λ is a tuning parameter that


determines the degree to which roughness is taken into account. Since the goal is to minimize


the objective function, the λS term may be viewed as a penalty that discourages less smooth


solutions.


A common way of measuring the overall lack of smoothness of a function is the integral


of its squared second derivative. If we consider this quantity for f̂a, we find


∫ ∞


−∞


(
f̂a


′′(x)
)2


dx =


∫ ∞


−∞


(
f̂ ◦′′(x) + ψ′′(x)T a


)2


dx


=


∫ ∞


−∞


(
(f̂ ◦′′(x))2 + 2f̂ ◦′′(x)ψ′′(x)T a + aT ψ′′(x)ψ′′(x)T a


)2


dx,


which may be approximated using the trapezoidal rule over the points in g in the same


manner as (5). Doing so and ignoring a-free terms we arrive at the quantity


Pen(a) =
gG − g1


2(G − 1)


[


aT


(


2f̂ ◦′′(g1)ψ
′′(g1) + 2f̂ ◦′′(gG)ψ′′(gG) + 4


G−1∑


l=2


f̂ ◦′′(gl)ψ
′′(gl)


)


+ aT


(


ψ′′(g1)ψ
′′(g1)


T + ψ′′(gG)ψ′′(gG)T + 2
G−1∑


l=2


ψ′′(gl)ψ
′′(gl)


T


)


a


]


,


and the final penalty is found by dropping the leading proportionality constant.


6







Roughness penalty


In the objective function aT (H + λS)a + vT a, define S and v as


S = S1 + SG + 2
G−1∑


l=2


Sl and v = v1 + vG + 2
G−1∑


l=2


vl,


where Sl = ψ′′(gl)ψ
′′(gl)


T and vl = f̂ ◦′′(gl)ψ
′′(gl).


The above penalty is not the only such quantity that could be derived. Other integrated


squared functions would have a similar form. For example one could penalize only on the


roughness of the adjustment rather than on the roughness of the final estimate; or penalize


on the integrated squared distance from a parametric density.


The Star Unimodal Constraint


The constraint of star unimodality with mode at m applies to d-dimensional densities. It


requires that f̂a(x) is decreasing along any ray emanating from m. We will consider the


d = 2 case. Where previously the constraints were enforced at a collection of G scalar


points, they are now enforced at {gl}, l = 1, . . . , G, a set of points in two-dimensional space.


The arrangement of these points over the support of the density is practically important,


but does not affect how the QP problem is set up.


Star unimodality can be checked by confirming that the directional derivative of the


density along the appropriate ray is negative. Let ul represent the unit vector in the direction


of gl from m, that is


ul =
gl − m


‖gl − m‖
.


The directional derivative at gl in the direction of ul is (∇f̂a(gl))
Tul, where ∇f̂a is the
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gradient of the estimate:


∇f̂a(gl) = ∇f̂ ◦(gl) + ∇
(
aT ψ(gl)


)


= ∇f̂ ◦(gl) +









aT ψ′
1(gl)


aT ψ′
2(gl)






 ,


where ψ′
i(y) is the derivative of ψ with respect to yi. So, letting ul = [ul


1 ul
2]


T , the constraint


is


(∇f̂a(gl))
Tul = (∇f̂ ◦(gl))


Tul +


[


aT ψ′
1(gl) aT ψ′


2(gl)


]







ul
1


ul
2









= (∇f̂ ◦(gl))
Tul + aT


(
ul


1ψ
′
1(gl) + ul


2ψ
′
2(gl)


)
.


Because this quantity must be less than or equal to zero, the constraint at point gl is


(
ul


1ψ
′
1(gl) + ul


2ψ
′
2(gl)


)T
a ≤ − (∇f̂ ◦(gl))


Tul.


Combining the constraints at all gl produces the system of inequalities.


Star unimodality constraint


Require A4a ≤ b4, where


A4
G×k


= −












u1
1ψ


′
1(gl)


T + u1
2ψ


′
2(g1)


T


...


uG
1 ψ′


1(gG)T + uG
2 ψ′


2(gG)T












and b4 = −












(∇f̂ ◦(g1))
Tu1


...


(∇f̂ ◦(gG))TuG












.
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